Tuning the Electronic and Optical Properties of Cu2ZnSn1−xGexS4 Alloys for Photovoltaic Applications: A Hybrid Density Functional Theory and Device Simulation Approach

Souraya Goumri-Said, Mohamed Issam Ziane, Mousaab Belarbi, Mohammed Benali Kanoun
{"title":"Tuning the Electronic and Optical Properties of Cu2ZnSn1−xGexS4 Alloys for Photovoltaic Applications: A Hybrid Density Functional Theory and Device Simulation Approach","authors":"Souraya Goumri-Said,&nbsp;Mohamed Issam Ziane,&nbsp;Mousaab Belarbi,&nbsp;Mohammed Benali Kanoun","doi":"10.1002/bte2.20240066","DOIUrl":null,"url":null,"abstract":"<p>In this study, we explore the electronic and optical properties of Cu<sub>2</sub>ZnSn<sub>1−<i>x</i></sub>Ge<sub><i>x</i></sub>S<sub>4</sub> using density functional theory combined with hybrid functional calculations. Alloying Cu<sub>2</sub>ZnSnS<sub>4</sub> with Ge and the formation of a band gap gradient are investigated as strategies to improve the efficiency of single-junction photovoltaic (PV) devices and as top cells in tandem solar cells. Our findings reveal that increasing Ge concentration leads to a rise in the band gap, with a small bowing constant (<i>b</i> ≈ 0.02 eV) indicating good miscibility of Ge in the host lattice. The electronic properties suggest that lower Ge incorporation may be optimal for PV applications. Additionally, device simulations were conducted to evaluate the impact of Cu<sub>2</sub>ZnSn<sub>1−<i>x</i></sub>Ge<sub><i>x</i></sub>S<sub>4</sub> layer thickness on device performance, with and without a back surface field. The integration of first-principles calculations with SCAPS-1D simulations offers a comprehensive framework for predicting the performance of Cu<sub>2</sub>ZnSn<sub>1−<i>x</i></sub>Ge<sub><i>x</i></sub>S<sub>4</sub> solar cells, highlighting the potential of Ge alloying for enhancing PV efficiency.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we explore the electronic and optical properties of Cu2ZnSn1−xGexS4 using density functional theory combined with hybrid functional calculations. Alloying Cu2ZnSnS4 with Ge and the formation of a band gap gradient are investigated as strategies to improve the efficiency of single-junction photovoltaic (PV) devices and as top cells in tandem solar cells. Our findings reveal that increasing Ge concentration leads to a rise in the band gap, with a small bowing constant (b ≈ 0.02 eV) indicating good miscibility of Ge in the host lattice. The electronic properties suggest that lower Ge incorporation may be optimal for PV applications. Additionally, device simulations were conducted to evaluate the impact of Cu2ZnSn1−xGexS4 layer thickness on device performance, with and without a back surface field. The integration of first-principles calculations with SCAPS-1D simulations offers a comprehensive framework for predicting the performance of Cu2ZnSn1−xGexS4 solar cells, highlighting the potential of Ge alloying for enhancing PV efficiency.

光电应用Cu2ZnSn1−xGexS4合金的电子和光学性能:混合密度泛函理论和器件模拟方法
在这项研究中,我们利用密度泛函理论结合混合泛函计算,探索了Cu2ZnSn1−xGexS4的电子和光学性质。研究了用Ge合金化Cu2ZnSnS4和形成带隙梯度作为提高单结光伏(PV)器件效率和作为串联太阳能电池顶层电池的策略。我们的研究结果表明,随着锗浓度的增加,带隙增大,弯曲常数较小(b≈0.02 eV),表明锗在主晶格中具有良好的混相性。电子性质表明,较低的Ge掺入可能是PV应用的最佳选择。此外,还进行了器件模拟,以评估Cu2ZnSn1−xGexS4层厚度对器件性能的影响,无论是否有后表面场。将第一性原理计算与SCAPS-1D模拟相结合,为预测Cu2ZnSn1−xGexS4太阳能电池的性能提供了一个全面的框架,突出了Ge合金在提高光伏效率方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信