Long-Wavelength Limit of a Quantum Euler–Poisson System in the (3+1) Dimensions for a Dense Magnetoplasma

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Rong Rong, Xueke Pu
{"title":"Long-Wavelength Limit of a Quantum Euler–Poisson System in the (3+1) Dimensions for a Dense Magnetoplasma","authors":"Rong Rong,&nbsp;Xueke Pu","doi":"10.1111/sapm.70064","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents the derivation of a (3+1)-dimensional quantum Zakharov–Kuznetsov (QZK) equation for ion acoustic waves. Using a singular perturbation method within the long-wavelength limit of the (3+1)-dimensional quantum Euler–Poisson system, we demonstrate that the QZK equation can be systematically derived through the Gardner–Morikawa transformation. The derived equation is valid over a time interval of order <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mi>ε</mi>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O(\\varepsilon ^{-3/2})$</annotation>\n </semantics></math>.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70064","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the derivation of a (3+1)-dimensional quantum Zakharov–Kuznetsov (QZK) equation for ion acoustic waves. Using a singular perturbation method within the long-wavelength limit of the (3+1)-dimensional quantum Euler–Poisson system, we demonstrate that the QZK equation can be systematically derived through the Gardner–Morikawa transformation. The derived equation is valid over a time interval of order O ( ε 3 / 2 ) $O(\varepsilon ^{-3/2})$ .

致密磁等离子体(3+1)维量子欧拉-泊松系统的长波极限
本文给出了离子声波的(3+1)维量子Zakharov-Kuznetsov (QZK)方程的推导。在(3+1)维量子Euler-Poisson系统的长波限内,利用奇异摄动方法证明了通过Gardner-Morikawa变换可以系统地推导出QZK方程。导出的方程在O(ε−3/2)$ O(\varepsilon ^{-3/2})$阶的时间区间内有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信