Measures, Modular Forms, and Summation Formulas of Poisson Type

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Claudia Alfes, Paul Kiefer, Jan Mazáč
{"title":"Measures, Modular Forms, and Summation Formulas of Poisson Type","authors":"Claudia Alfes,&nbsp;Paul Kiefer,&nbsp;Jan Mazáč","doi":"10.1007/s00220-025-05313-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we show that Fourier eigenmeasures supported on spheres with radii given by a locally finite sequence, which we call <i>k</i>-spherical measures, correspond to Fourier series exhibiting a modular-type transformation behaviour with respect to the metaplectic group. A familiar subset of such Fourier series comprises holomorphic modular forms. This allows us to construct <i>k</i>-spherical eigenmeasures and derive Poisson-type summation formulas, thereby recovering formulas of a similar nature established by Cohn–Gonçalves, Lev–Reti, and Meyer, among others. Additionally, we extend our results to higher dimensions, where Hilbert modular forms yield higher-dimensional <i>k</i>-spherical measures.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05313-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05313-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we show that Fourier eigenmeasures supported on spheres with radii given by a locally finite sequence, which we call k-spherical measures, correspond to Fourier series exhibiting a modular-type transformation behaviour with respect to the metaplectic group. A familiar subset of such Fourier series comprises holomorphic modular forms. This allows us to construct k-spherical eigenmeasures and derive Poisson-type summation formulas, thereby recovering formulas of a similar nature established by Cohn–Gonçalves, Lev–Reti, and Meyer, among others. Additionally, we extend our results to higher dimensions, where Hilbert modular forms yield higher-dimensional k-spherical measures.

泊松型的测度、模形式和求和公式
在本文中,我们证明了支持在半径由局部有限序列给定的球上的傅立叶特征测度,我们称之为k-球测度,对应于对广义群表现出模型变换行为的傅立叶级数。这种傅里叶级数的一个常见子集包括全纯模形式。这使我们能够构造k球特征测度并推导泊松型求和公式,从而恢复由cohn - gonalves, Lev-Reti和Meyer等人建立的类似性质的公式。此外,我们将我们的结果扩展到更高的维度,其中希尔伯特模形式产生更高维度的k球测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信