Electrolyte Additive-Assembled Interconnecting Molecules–Zinc Anode Interface for Zinc-Ion Hybrid Supercapacitors

IF 26.6 1区 材料科学 Q1 Engineering
Yang Li, Xu Li, Xinya Peng, Xinyu Yang, Feiyu Kang, Liubing Dong
{"title":"Electrolyte Additive-Assembled Interconnecting Molecules–Zinc Anode Interface for Zinc-Ion Hybrid Supercapacitors","authors":"Yang Li,&nbsp;Xu Li,&nbsp;Xinya Peng,&nbsp;Xinyu Yang,&nbsp;Feiyu Kang,&nbsp;Liubing Dong","doi":"10.1007/s40820-025-01794-1","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc-ion hybrid supercapacitors (ZHSs) are promising energy storage systems integrating high energy density and high-power density, whereas they are plagued by the poor electrochemical stability and inferior kinetics of zinc anodes. Herein, we report an electrolyte additive-assembled interconnecting molecules–zinc anode interface, realizing highly stable and fast-kinetics zinc anodes for ZHSs. The sulfobutyl groups-grafted β-cyclodextrin (SC) supramolecules as a trace additive in ZnSO<sub>4</sub> electrolytes not only adsorb on zinc anodes but also self-assemble into an interconnecting molecule interface benefiting from the mutual attraction between the electron-rich sulfobutyl group and the electron-poor cavity of the adjacent SC supramolecule. The interconnecting molecules–zinc anode interface provides abundant anion-trapping cavities and zincophilic groups to enhance Zn<sup>2+</sup> transference number and homogenize Zn<sup>2+</sup> deposition sites, and meanwhile, it accelerates the desolvation of hydrated Zn<sup>2+</sup> to improve zinc deposition kinetics and inhibit active water molecules from inducing parasitic reactions at the zinc deposition interface, making zinc anodes present superior reversibility with 99.7% Coulombic efficiency, ~ 30 times increase in operation lifetime and an outstanding cumulative capacity at large current densities. ZHSs with 20,000-cycle life and optimized rate capability are thereby achieved. This work provides an inspiring strategy for designing zinc anode interfaces to promote the development of ZHSs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01794-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01794-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-ion hybrid supercapacitors (ZHSs) are promising energy storage systems integrating high energy density and high-power density, whereas they are plagued by the poor electrochemical stability and inferior kinetics of zinc anodes. Herein, we report an electrolyte additive-assembled interconnecting molecules–zinc anode interface, realizing highly stable and fast-kinetics zinc anodes for ZHSs. The sulfobutyl groups-grafted β-cyclodextrin (SC) supramolecules as a trace additive in ZnSO4 electrolytes not only adsorb on zinc anodes but also self-assemble into an interconnecting molecule interface benefiting from the mutual attraction between the electron-rich sulfobutyl group and the electron-poor cavity of the adjacent SC supramolecule. The interconnecting molecules–zinc anode interface provides abundant anion-trapping cavities and zincophilic groups to enhance Zn2+ transference number and homogenize Zn2+ deposition sites, and meanwhile, it accelerates the desolvation of hydrated Zn2+ to improve zinc deposition kinetics and inhibit active water molecules from inducing parasitic reactions at the zinc deposition interface, making zinc anodes present superior reversibility with 99.7% Coulombic efficiency, ~ 30 times increase in operation lifetime and an outstanding cumulative capacity at large current densities. ZHSs with 20,000-cycle life and optimized rate capability are thereby achieved. This work provides an inspiring strategy for designing zinc anode interfaces to promote the development of ZHSs.

锌离子混合超级电容器的电解质添加剂-组装互连分子-锌阳极界面
锌离子混合超级电容器是一种集高能量密度和高功率密度于一体的极具发展前景的储能系统,但锌阳极的电化学稳定性差、动力学性能差是其发展的瓶颈。在此,我们报道了一种电解质添加剂-组装互连分子-锌阳极界面,实现了高稳定和快速动力学的zhs锌阳极。作为微量添加剂的亚基丁基接枝的β-环糊精(SC)超分子不仅吸附在锌阳极上,而且利用富电子的亚基丁基与相邻SC超分子的贫电子腔之间的相互吸引,自组装成一个相互连接的分子界面。相互连接的分子-锌阳极界面提供了丰富的阴离子捕获空腔和亲锌基团,提高了Zn2+的转移数量,使Zn2+沉积位点均匀化,同时加速了水合Zn2+的脱溶,提高了锌沉积动力学,抑制了活性水分子在锌沉积界面诱导寄生反应,使锌阳极呈现出优异的可逆性,库仑效率达到99.7%。工作寿命增加30倍,在大电流密度下具有出色的累积容量。从而实现了具有20,000次循环寿命和优化速率能力的zhs。本研究为锌阳极界面的设计提供了一种有启发意义的策略,以促进ZHSs的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信