{"title":"A fast convolution-based method for peridynamic models in plasticity and ductile fracture","authors":"Farzaneh Mousavi, Siavash Jafarzadeh, Florin Bobaru","doi":"10.1007/s10704-025-00849-z","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the fast convolution-based method (FCBM) for a peridynamic correspondence (cPD) model to simulate finite plastic deformations and ductile fracture in 3D. The cPD model allows the direct use of classical finite plasticity constitutive ductile failure models, like the Johnson–Cook (J-C) model used here. We validate the FCBM for the cPD model against experimental results from the literature on ductile failure in Al2021-351 alloy samples of various geometries. Notably, calibration of elastic and hardening material parameters is made only using the experimental data from the simplest geometry, a smooth round bar, and only up to the necking point. We then use that calibrated model beyond necking, through full failure, and for all the different sample geometries. The performance (speedup and memory allocation) of the new method is compared versus the meshfree method normally used to discretize PD models for fracture and damage. The proposed method leads to efficient large-scale peridynamic simulations of finite plastic deformations and ductile failure that are closer to experimental measurements in terms of displacement and plastic strain at failure than previous FEM-based solutions from the literature.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00849-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the fast convolution-based method (FCBM) for a peridynamic correspondence (cPD) model to simulate finite plastic deformations and ductile fracture in 3D. The cPD model allows the direct use of classical finite plasticity constitutive ductile failure models, like the Johnson–Cook (J-C) model used here. We validate the FCBM for the cPD model against experimental results from the literature on ductile failure in Al2021-351 alloy samples of various geometries. Notably, calibration of elastic and hardening material parameters is made only using the experimental data from the simplest geometry, a smooth round bar, and only up to the necking point. We then use that calibrated model beyond necking, through full failure, and for all the different sample geometries. The performance (speedup and memory allocation) of the new method is compared versus the meshfree method normally used to discretize PD models for fracture and damage. The proposed method leads to efficient large-scale peridynamic simulations of finite plastic deformations and ductile failure that are closer to experimental measurements in terms of displacement and plastic strain at failure than previous FEM-based solutions from the literature.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.