Involutions in Coxeter groups

IF 0.5 4区 数学 Q3 MATHEMATICS
Anna Reimann, Yuri Santos Rego, Petra Schwer, Olga Varghese
{"title":"Involutions in Coxeter groups","authors":"Anna Reimann,&nbsp;Yuri Santos Rego,&nbsp;Petra Schwer,&nbsp;Olga Varghese","doi":"10.1007/s10468-025-10332-x","DOIUrl":null,"url":null,"abstract":"<div><p>We combinatorially characterize the number <span>\\(\\textrm{cc}_2\\)</span> of conjugacy classes of involutions in any Coxeter group in terms of higher rank odd graphs. This notion naturally generalizes the concept of odd graphs, used previously to count the number of conjugacy classes of reflections. Moreover, we provide formulae for finite and affine types, besides computing <span>\\(\\textrm{cc}_2\\)</span> for all triangle groups and RACGs.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"647 - 667"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-025-10332-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-025-10332-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We combinatorially characterize the number \(\textrm{cc}_2\) of conjugacy classes of involutions in any Coxeter group in terms of higher rank odd graphs. This notion naturally generalizes the concept of odd graphs, used previously to count the number of conjugacy classes of reflections. Moreover, we provide formulae for finite and affine types, besides computing \(\textrm{cc}_2\) for all triangle groups and RACGs.

考克斯特群体的内讧
我们用高阶奇图组合地刻画了任意Coxeter群中对合的共轭类的个数\(\textrm{cc}_2\)。这个概念很自然地推广了奇图的概念,奇图以前被用来计算反射的共轭类的数量。此外,除了计算所有三角形群和racg的\(\textrm{cc}_2\)外,我们还提供了有限型和仿射型的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信