{"title":"On Interpolation Categories for the Hyperoctahedral Group","authors":"Th. Heidersdorf, G. Tyriard","doi":"10.1007/s10468-025-10331-y","DOIUrl":null,"url":null,"abstract":"<div><p>Two different types of Deligne categories have been defined to interpolate the finite dimensional complex representations of the hyperoctahedral group. The first one, initially defined by Knop and then further studied by Likeng and Savage, uses a categorical analogue of the permutation representation as a tensor generator. The second one, due to Flake and Maassen, is tensor generated by a categorical analogue of the reflection representation. We construct a symmetric monoidal functor between the two and show that it is an equivalence of symmetric monoidal categories.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"613 - 646"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-025-10331-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-025-10331-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Two different types of Deligne categories have been defined to interpolate the finite dimensional complex representations of the hyperoctahedral group. The first one, initially defined by Knop and then further studied by Likeng and Savage, uses a categorical analogue of the permutation representation as a tensor generator. The second one, due to Flake and Maassen, is tensor generated by a categorical analogue of the reflection representation. We construct a symmetric monoidal functor between the two and show that it is an equivalence of symmetric monoidal categories.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.