Comparative hygroscopic aerosol particle sizing measurements of the hygroscopic growth of inhaled pharmaceutical ingredients†

Yiliang Lance Jiang, Josef Kadziola, Jose R. Ruiz, Richard Friend and Jonathan P. Reid
{"title":"Comparative hygroscopic aerosol particle sizing measurements of the hygroscopic growth of inhaled pharmaceutical ingredients†","authors":"Yiliang Lance Jiang, Josef Kadziola, Jose R. Ruiz, Richard Friend and Jonathan P. Reid","doi":"10.1039/D4PM00310A","DOIUrl":null,"url":null,"abstract":"<p >The size distribution of an inhaled pharmaceutical aerosol generated by a nebulizer is a critical parameter influencing the deposition and therapeutic effect of the medication. Relative humidity (RH) can alter size distribution by promoting particle growth through condensation, depending on the hygroscopicity of the formulation. In this study, we evaluate the effect of RH on mannitol, trehalose, salbutamol, and tobramycin aerosols using the Comparative Hygroscopic Aerosol Particle Sizing (CHAPS) technique under varying RH conditions, ranging from ambient to physiological levels. The results demonstrate that RH significantly influences the aerosol particle size, with particle growth becoming more pronounced as RH exceeds 95%. The findings confirm that understanding the relationship between geometric radial growth factors (rGFs) from single droplet size measurements and the aerodynamic rGF is essential for more accurate prediction of plume size distribution, especially at lower RH levels. We also demonstrate consistency between the size distributions measured by CHAPS and a Next Generation Impactor (NGI), with CHAPS providing higher resolution in size and time and data on actuation-by-actuation variability in size distribution and aerosol dose.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 3","pages":" 630-643"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d4pm00310a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d4pm00310a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The size distribution of an inhaled pharmaceutical aerosol generated by a nebulizer is a critical parameter influencing the deposition and therapeutic effect of the medication. Relative humidity (RH) can alter size distribution by promoting particle growth through condensation, depending on the hygroscopicity of the formulation. In this study, we evaluate the effect of RH on mannitol, trehalose, salbutamol, and tobramycin aerosols using the Comparative Hygroscopic Aerosol Particle Sizing (CHAPS) technique under varying RH conditions, ranging from ambient to physiological levels. The results demonstrate that RH significantly influences the aerosol particle size, with particle growth becoming more pronounced as RH exceeds 95%. The findings confirm that understanding the relationship between geometric radial growth factors (rGFs) from single droplet size measurements and the aerodynamic rGF is essential for more accurate prediction of plume size distribution, especially at lower RH levels. We also demonstrate consistency between the size distributions measured by CHAPS and a Next Generation Impactor (NGI), with CHAPS providing higher resolution in size and time and data on actuation-by-actuation variability in size distribution and aerosol dose.

吸入药物成分吸湿性生长的比较吸湿性气溶胶粒径测量
雾化器产生的吸入药物气雾剂的粒径分布是影响药物沉积和治疗效果的关键参数。相对湿度(RH)可以通过凝结促进颗粒生长来改变尺寸分布,这取决于配方的吸湿性。在这项研究中,我们使用比较吸湿气溶胶颗粒大小(CHAPS)技术在不同的RH条件下(从环境水平到生理水平)评估RH对甘露醇、海藻糖、沙丁胺醇和妥布霉素气雾剂的影响。结果表明:相对湿度对气溶胶粒径有显著影响,当相对湿度超过95%时,颗粒物的生长更加明显;研究结果证实,了解单液滴尺寸测量的几何径向生长因子(rGFs)与气动rGF之间的关系对于更准确地预测羽流尺寸分布至关重要,特别是在较低RH水平下。我们还证明了CHAPS测量的尺寸分布与下一代撞击器(NGI)之间的一致性,CHAPS提供了更高的尺寸和时间分辨率,以及驱动对驱动尺寸分布和气溶胶剂量变化的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信