Comparison of macromolecule permeation through extracellular matrix and hyaluronic acid to inform in vitro testing of subcutaneous therapies

Jana Javorovic, Belal I. Hanafy, Frans Franek and Driton Vllasaliu
{"title":"Comparison of macromolecule permeation through extracellular matrix and hyaluronic acid to inform in vitro testing of subcutaneous therapies","authors":"Jana Javorovic, Belal I. Hanafy, Frans Franek and Driton Vllasaliu","doi":"10.1039/D4PM00271G","DOIUrl":null,"url":null,"abstract":"<p >Subcutaneous injection is a widely used route of drug administration, but biopredictive <em>in vitro</em> tools for predicting <em>in vivo</em> bioavailability are not widely established. One such system, the subcutaneous injection site simulator (SCISSOR), incorporates hyaluronic acid (HA) as a model of the subcutaneous extracellular matrix (ECM), which dictates the diffusion of test compounds. However, the native ECM found is markedly more complex. Here for the first time, we compared the permeation of macromolecules with different physicochemical properties (molecular weight and charge) and model biological molecules across the HA hydrogel (used in SCISSOR) and an animal-derived basement membrane extract (BME), an ECM. We coated tissue culture inserts with these matrices as a simple experimental set up to test the permeation. The results show that the two matrices displayed similarities and some notable differences in their performance as barriers for macromolecules of different properties, suggesting that a simple experimental setup utilising biologically derived ECM may act as an inexpensive and accessible tool to predict the <em>in vivo</em> performance of biotherapeutics for SC administration.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 3","pages":" 624-629"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d4pm00271g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d4pm00271g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Subcutaneous injection is a widely used route of drug administration, but biopredictive in vitro tools for predicting in vivo bioavailability are not widely established. One such system, the subcutaneous injection site simulator (SCISSOR), incorporates hyaluronic acid (HA) as a model of the subcutaneous extracellular matrix (ECM), which dictates the diffusion of test compounds. However, the native ECM found is markedly more complex. Here for the first time, we compared the permeation of macromolecules with different physicochemical properties (molecular weight and charge) and model biological molecules across the HA hydrogel (used in SCISSOR) and an animal-derived basement membrane extract (BME), an ECM. We coated tissue culture inserts with these matrices as a simple experimental set up to test the permeation. The results show that the two matrices displayed similarities and some notable differences in their performance as barriers for macromolecules of different properties, suggesting that a simple experimental setup utilising biologically derived ECM may act as an inexpensive and accessible tool to predict the in vivo performance of biotherapeutics for SC administration.

通过细胞外基质和透明质酸的大分子渗透比较,为皮下治疗的体外测试提供信息
皮下注射是一种广泛使用的给药途径,但用于预测体内生物利用度的生物预测体外工具尚未广泛建立。其中一个这样的系统,皮下注射部位模拟器(SCISSOR),包含透明质酸(HA)作为皮下细胞外基质(ECM)的模型,它指示测试化合物的扩散。然而,发现的原生ECM明显更为复杂。在这里,我们首次比较了具有不同物理化学性质(分子量和电荷)的大分子和模型生物分子在透明质酸水凝胶(用于SCISSOR)和动物源性基底膜提取物(BME) (ECM)中的渗透情况。我们用这些基质包覆组织培养插入物,作为一个简单的实验设置来测试渗透。结果表明,这两种基质在作为不同性质的大分子屏障方面表现出相似性和一些显著差异,这表明利用生物来源的ECM的简单实验设置可能作为一种廉价且易于获得的工具来预测SC给药的生物治疗药物的体内性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信