The Defining Characteristic Case of the Representations of \(\textrm{GL}_{n}\) and \(\textrm{SL}_{n}\) Over Principal Ideal Local Rings

IF 0.6 4区 数学 Q3 MATHEMATICS
Nariel Monteiro
{"title":"The Defining Characteristic Case of the Representations of \\(\\textrm{GL}_{n}\\) and \\(\\textrm{SL}_{n}\\) Over Principal Ideal Local Rings","authors":"Nariel Monteiro","doi":"10.1007/s10468-025-10333-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(W_{r}(\\mathbb {F}_{q})\\)</span> be the ring of Witt vectors of length <i>r</i> with residue field <span>\\(\\mathbb {F}_{q}\\)</span> of characteristic <i>p</i>. In this paper, we study the defining characteristic case of the representations of <span>\\(\\textrm{GL}_{n}\\)</span> and <span>\\(\\textrm{SL}_{n}\\)</span> over the principal ideal local rings <span>\\(W_{r}(\\mathbb {F}_{q})\\)</span> and <span>\\(\\mathbb {F}_{q}[t]/t^{r}\\)</span>. Let <span>\\({\\textbf{G}}\\)</span> be either <span>\\(\\textrm{GL}_{n}\\)</span> or <span>\\(\\textrm{SL}_{n}\\)</span> and <i>F</i> a perfect field of characteristic <i>p</i>, we prove that for most <i>p</i> the group algebras <span>\\(F[{\\textbf{G}}(W_{r}(\\mathbb {F}_{q}))]\\)</span> and <span>\\(F[{\\textbf{G}}(\\mathbb {F}_{q}[t]/t^{r})]\\)</span> are not stably equivalent of Morita type. Thus, the group algebras <span>\\(F[{\\textbf{G}}(W_{r}(\\mathbb {F}_{q}))]\\)</span> and <span>\\(F[{\\textbf{G}}(\\mathbb {F}_{q}[t]/t^{r})]\\)</span> are not isomorphic in the defining characteristic case.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 2","pages":"669 - 677"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-025-10333-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(W_{r}(\mathbb {F}_{q})\) be the ring of Witt vectors of length r with residue field \(\mathbb {F}_{q}\) of characteristic p. In this paper, we study the defining characteristic case of the representations of \(\textrm{GL}_{n}\) and \(\textrm{SL}_{n}\) over the principal ideal local rings \(W_{r}(\mathbb {F}_{q})\) and \(\mathbb {F}_{q}[t]/t^{r}\). Let \({\textbf{G}}\) be either \(\textrm{GL}_{n}\) or \(\textrm{SL}_{n}\) and F a perfect field of characteristic p, we prove that for most p the group algebras \(F[{\textbf{G}}(W_{r}(\mathbb {F}_{q}))]\) and \(F[{\textbf{G}}(\mathbb {F}_{q}[t]/t^{r})]\) are not stably equivalent of Morita type. Thus, the group algebras \(F[{\textbf{G}}(W_{r}(\mathbb {F}_{q}))]\) and \(F[{\textbf{G}}(\mathbb {F}_{q}[t]/t^{r})]\) are not isomorphic in the defining characteristic case.

主理想局部环上\(\textrm{GL}_{n}\)和\(\textrm{SL}_{n}\)表示的定义特征情形
设\(W_{r}(\mathbb {F}_{q})\)为长度为r的Witt向量组成的环,剩余域为特征p的\(\mathbb {F}_{q}\)。本文研究了主理想局部环\(W_{r}(\mathbb {F}_{q})\)和\(\mathbb {F}_{q}[t]/t^{r}\)上\(\textrm{GL}_{n}\)和\(\textrm{SL}_{n}\)表示的定义特征情况。设\({\textbf{G}}\)为\(\textrm{GL}_{n}\)或\(\textrm{SL}_{n}\), F为特征p的完美域,证明了对于大多数p,群代数\(F[{\textbf{G}}(W_{r}(\mathbb {F}_{q}))]\)和\(F[{\textbf{G}}(\mathbb {F}_{q}[t]/t^{r})]\)不稳定等价于Morita型。因此,群代数\(F[{\textbf{G}}(W_{r}(\mathbb {F}_{q}))]\)和\(F[{\textbf{G}}(\mathbb {F}_{q}[t]/t^{r})]\)在定义特征情况下不是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信