Contractivity of stochastic θ-methods under non-global Lipschitz conditions

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Helena Biščević , Raffaele D'Ambrosio , Stefano Di Giovacchino
{"title":"Contractivity of stochastic θ-methods under non-global Lipschitz conditions","authors":"Helena Biščević ,&nbsp;Raffaele D'Ambrosio ,&nbsp;Stefano Di Giovacchino","doi":"10.1016/j.amc.2025.129527","DOIUrl":null,"url":null,"abstract":"<div><div>The paper is devoted to address the numerical preservation of the exponential mean-square contractive character of the dynamics of stochastic differential equations (SDEs), whose drift and diffusion coefficients are subject to non-global Lipschitz assumptions. The conservative attitude of stochastic <em>θ</em>-methods is analyzed both for Itô and Stratonovich SDEs. The case of systems with linear drift is also analyzed in terms of spectral properties of the coefficient matrix of the drift. Numerical evidence on selected test problems confirms the effectiveness of the approach.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"505 ","pages":"Article 129527"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032500253X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is devoted to address the numerical preservation of the exponential mean-square contractive character of the dynamics of stochastic differential equations (SDEs), whose drift and diffusion coefficients are subject to non-global Lipschitz assumptions. The conservative attitude of stochastic θ-methods is analyzed both for Itô and Stratonovich SDEs. The case of systems with linear drift is also analyzed in terms of spectral properties of the coefficient matrix of the drift. Numerical evidence on selected test problems confirms the effectiveness of the approach.
非全局Lipschitz条件下随机θ-方法的收缩性
本文研究了漂移系数和扩散系数服从非全局Lipschitz假设的随机微分方程(SDEs)动力学的指数均方收缩特性的数值守恒问题。分析了随机θ-方法对Itô和Stratonovich SDEs的保守性态度。从漂移系数矩阵的谱性质出发,分析了线性漂移系统的情况。选定测试问题的数值证据证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信