{"title":"Fixed-parameter algorithms for cardinality-constrained graph partitioning problems on sparse graphs","authors":"Suguru Yamada , Tesshu Hanaka","doi":"10.1016/j.dam.2025.05.012","DOIUrl":null,"url":null,"abstract":"<div><div>For an undirected and edge-weighted graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and a vertex subset <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi></mrow></math></span>, we define a function <span><math><mrow><msub><mrow><mi>φ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>≔</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>⋅</mi><mi>w</mi><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>+</mo><mi>α</mi><mi>⋅</mi><mi>w</mi><mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>V</mi><mo>∖</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> is a real number, <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> is the sum of the weights of edges having two endpoints in <span><math><mi>S</mi></math></span>, and <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>S</mi><mo>,</mo><mi>V</mi><mo>∖</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> is the sum of the weights of edges having one endpoint in <span><math><mi>S</mi></math></span> and the other in <span><math><mrow><mi>V</mi><mo>∖</mo><mi>S</mi></mrow></math></span>. Then, given an undirected and edge-weighted graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and a positive integer <span><math><mi>k</mi></math></span>, <span>Max (Min)</span>\n <span><math><mi>α</mi></math></span>-<span>Fixed Cardinality Graph Partitioning (Max (Min)</span>\n <span><math><mi>α</mi></math></span>-<span>FCGP)</span> is the problem to find a vertex subset <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> of size <span><math><mi>k</mi></math></span> that maximizes (minimizes) <span><math><mrow><msub><mrow><mi>φ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we first show that <span>Max</span>\n <span><math><mi>α</mi></math></span>-<span>FCGP</span> with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> and <span>Min</span>\n <span><math><mi>α</mi></math></span>-<span>FCGP</span> with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>]</mo></mrow></mrow></math></span> can be solved in time <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>o</mi><mrow><mo>(</mo><mi>k</mi><mi>d</mi><mo>+</mo><mi>k</mi><mo>)</mo></mrow></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mi>e</mi><mi>d</mi><mo>)</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span> where <span><math><mi>k</mi></math></span> is the solution size, <span><math><mi>d</mi></math></span> is the degeneracy of an input graph, and <span><math><mi>e</mi></math></span> is Napier’s constant. Then we consider <span>Max (Min) Connected</span>\n <span><math><mi>α</mi></math></span>-<span>FCGP</span>, which additionally requires the connectivity of a solution. We show that if <span>Max (Min)</span>\n <span><math><mi>α</mi></math></span>-<span>FCGP</span> is W[1]-hard parameterized by <span><math><mi>k</mi></math></span>, so is <span>Max (Min) Connected</span>\n <span><math><mi>α</mi></math></span>-<span>FCGP</span>. Then, we give a <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><msqrt><mrow><mi>k</mi></mrow></msqrt><msup><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>k</mi><mo>)</mo></mrow></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span>-time randomized algorithm on apex-minor-free graphs. Moreover, for <span>Max Connected</span>\n <span><math><mi>α</mi></math></span>-<span>FCGP</span> with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> and <span>Min Connected</span>\n <span><math><mi>α</mi></math></span>-<span>FCGP</span> with <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>3</mn><mo>]</mo></mrow></mrow></math></span>, we propose a <span><math><mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>d</mi><mo>)</mo></mrow></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mn>2</mn></mrow><mrow><mi>o</mi><mrow><mo>(</mo><mi>k</mi><mi>d</mi><mo>)</mo></mrow><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></mrow></math></span>-time algorithm. Finally, we show that they admit FPT-ASs parameterized by <span><math><mi>k</mi></math></span> when edge weights are constant.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 343-354"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002586","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For an undirected and edge-weighted graph and a vertex subset , we define a function , where is a real number, is the sum of the weights of edges having two endpoints in , and is the sum of the weights of edges having one endpoint in and the other in . Then, given an undirected and edge-weighted graph and a positive integer , Max (Min)
-Fixed Cardinality Graph Partitioning (Max (Min)
-FCGP) is the problem to find a vertex subset of size that maximizes (minimizes) . In this paper, we first show that Max
-FCGP with and Min
-FCGP with can be solved in time where is the solution size, is the degeneracy of an input graph, and is Napier’s constant. Then we consider Max (Min) Connected
-FCGP, which additionally requires the connectivity of a solution. We show that if Max (Min)
-FCGP is W[1]-hard parameterized by , so is Max (Min) Connected
-FCGP. Then, we give a -time randomized algorithm on apex-minor-free graphs. Moreover, for Max Connected
-FCGP with and Min Connected
-FCGP with , we propose a -time algorithm. Finally, we show that they admit FPT-ASs parameterized by when edge weights are constant.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.