In Situ Environmental Transmission Electron Microscopy Investigation on LiH Formation Prompted by LiF

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinyang Yu, Digen Ruan, Yuan Ma, Xuzhi Zheng, Ze Hua, Ruiwen Shao, Dazhuang Wang, Zhuo Kang*, Xiaodi Ren*, Lijie Qiao and Yang He*, 
{"title":"In Situ Environmental Transmission Electron Microscopy Investigation on LiH Formation Prompted by LiF","authors":"Xinyang Yu,&nbsp;Digen Ruan,&nbsp;Yuan Ma,&nbsp;Xuzhi Zheng,&nbsp;Ze Hua,&nbsp;Ruiwen Shao,&nbsp;Dazhuang Wang,&nbsp;Zhuo Kang*,&nbsp;Xiaodi Ren*,&nbsp;Lijie Qiao and Yang He*,&nbsp;","doi":"10.1021/acs.nanolett.5c0149010.1021/acs.nanolett.5c01490","DOIUrl":null,"url":null,"abstract":"<p >Lithium hydride is a common but unfavorable component that leads to “dead Li” formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries’ cycling stability. Herein, by using <i>in situ</i> environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation. <i>Ex situ</i> coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 20","pages":"8303–8309 8303–8309"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01490","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium hydride is a common but unfavorable component that leads to “dead Li” formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries’ cycling stability. Herein, by using in situ environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation. Ex situ coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries.

Abstract Image

原位环境透射电镜研究LiF诱导的LiH形成
氢化锂是一种常见但不利的成分,会导致锂电池中的“死锂”形成。由于电池中的氢源是多种多样的,并且很难避免,因此揭示促进锂离子形成的关键因素对于提高锂电池的循环稳定性至关重要。本文通过原位环境透射电子显微镜,揭示了氟化锂在锂在氢环境中电化学沉积过程中对LiH形成的关键作用,可能是通过促进氢解离和LiH成核的动力学过程。非原位硬币电池研究和DFT计算证实了这一发现,进一步表明常用的富氟电解质可以促进锂离子的形成。此外,枝晶中的锂离子晶格是扭曲的,可能是非化学计量的,具有面心的锂金属立方结构域。这些关于锂离子形成的基本见解可能为提高锂电池的循环稳定性铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信