Oxygen Vacancy Induced 2D Bi2SeO5 Non-Volatile Memristor for 1T1R Integration

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tingting Guo, Zhidong Pan, Yehui Shen, Jialin Yang, Chuyao Chen, Yunhai Xiong, Xuan Chen, Yang Song, Nengjie Huo, Rongqing Xu, Gangyi Zhu, Guangxu Shen, Xiang Chen, Shengli Zhang*, Xiufeng Song* and Haibo Zeng*, 
{"title":"Oxygen Vacancy Induced 2D Bi2SeO5 Non-Volatile Memristor for 1T1R Integration","authors":"Tingting Guo,&nbsp;Zhidong Pan,&nbsp;Yehui Shen,&nbsp;Jialin Yang,&nbsp;Chuyao Chen,&nbsp;Yunhai Xiong,&nbsp;Xuan Chen,&nbsp;Yang Song,&nbsp;Nengjie Huo,&nbsp;Rongqing Xu,&nbsp;Gangyi Zhu,&nbsp;Guangxu Shen,&nbsp;Xiang Chen,&nbsp;Shengli Zhang*,&nbsp;Xiufeng Song* and Haibo Zeng*,&nbsp;","doi":"10.1021/acs.nanolett.5c0134510.1021/acs.nanolett.5c01345","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) layered Bi<sub>2</sub>SeO<sub>5</sub>, a novel high-k oxide material, has shown considerable potential for enhancing memristor performance. In this study, high-crystallinity 2D Bi<sub>2</sub>SeO<sub>5</sub> nanosheets were successfully exfoliated, demonstrating that oxygen-vacancy-induced Bi<sub>2</sub>SeO<sub>5</sub> memristors exhibit superior nonvolatile characteristics. Specifically, these memristors exhibit an ultrahigh on/off ratio (up to 10<sup>10</sup>), an extremely low off-state current (10<sup>–12</sup> A), and rapid switching speeds (160 ns for SET and 110 ns for RESET). Moreover, the memristor demonstrates excellent retention and endurance capabilities. Additionally, by integrating SnS<sub>2</sub> transistors, a 1T1R (one transistor and one resistor) structure was constructed, which simplifies circuit design and enables AND gate logic and multivalue logic storage functions. This work establishes a solid foundation for the practical application of 2D high-performance oxide memristors in future high-density-integration and fast in-memory computing systems.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 20","pages":"8258–8266 8258–8266"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01345","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) layered Bi2SeO5, a novel high-k oxide material, has shown considerable potential for enhancing memristor performance. In this study, high-crystallinity 2D Bi2SeO5 nanosheets were successfully exfoliated, demonstrating that oxygen-vacancy-induced Bi2SeO5 memristors exhibit superior nonvolatile characteristics. Specifically, these memristors exhibit an ultrahigh on/off ratio (up to 1010), an extremely low off-state current (10–12 A), and rapid switching speeds (160 ns for SET and 110 ns for RESET). Moreover, the memristor demonstrates excellent retention and endurance capabilities. Additionally, by integrating SnS2 transistors, a 1T1R (one transistor and one resistor) structure was constructed, which simplifies circuit design and enables AND gate logic and multivalue logic storage functions. This work establishes a solid foundation for the practical application of 2D high-performance oxide memristors in future high-density-integration and fast in-memory computing systems.

Abstract Image

氧空位诱导2D Bi2SeO5非易失性忆阻器1T1R集成
二维(2D)层状Bi2SeO5是一种新型的高k氧化物材料,在提高忆阻器性能方面显示出相当大的潜力。在这项研究中,高结晶度的二维Bi2SeO5纳米片被成功剥离,表明氧空位诱导的Bi2SeO5忆阻器具有优越的非挥发性特性。具体来说,这些忆阻器具有超高的开/关比(高达1010),极低的关断电流(10-12 A)和快速的开关速度(SET为160 ns, RESET为110 ns)。此外,忆阻器表现出优异的保持和持久能力。此外,通过集成SnS2晶体管,构建了1T1R(一晶体管一电阻)结构,简化了电路设计,实现了与门逻辑和多值逻辑存储功能。这项工作为二维高性能氧化物忆阻器在未来高密度集成和快速内存计算系统中的实际应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信