{"title":"Ultrafast Bright-to-Dark Exciton Relaxation in Bilayer Borophene Driven by Strong Excitonic Effects.","authors":"Yunlei Wang,Haifeng Lv,Xiaojun Wu","doi":"10.1021/acs.nanolett.5c02115","DOIUrl":null,"url":null,"abstract":"Exciton dynamics in the recently discovered bilayer borophene (BL-α5, consisting of two stacked v1/12 boron sheets) are of great interest due to this material's promising electronic and optical properties for nano-optoelectronic applications. Using a GW plus real-time Bethe-Salpeter equation (GW-rtBSE) approach and ab initio nonadiabatic molecular dynamics (NAMD), we identify a Frenkel-type lowest-energy bright exciton and a spatially delocalized dark exciton in BL-α5, with large binding energies of ∼700 and ∼502 meV, respectively. The electron-hole (e-h) Coulomb interaction (exciton effect) dominates over electron-phonon (e-ph) scattering, playing a pivotal role in an ultrafast bright-to-dark exciton transition with a relaxation time of ∼150 fs. Furthermore, the dark excitons undergo nonradiative recombination on a picosecond time scale (∼14 ps at room temperature). These results provide a theoretical foundation for potential nano-optoelectronic and light-energy harvesting applications of bilayer borophene.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"18 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c02115","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Exciton dynamics in the recently discovered bilayer borophene (BL-α5, consisting of two stacked v1/12 boron sheets) are of great interest due to this material's promising electronic and optical properties for nano-optoelectronic applications. Using a GW plus real-time Bethe-Salpeter equation (GW-rtBSE) approach and ab initio nonadiabatic molecular dynamics (NAMD), we identify a Frenkel-type lowest-energy bright exciton and a spatially delocalized dark exciton in BL-α5, with large binding energies of ∼700 and ∼502 meV, respectively. The electron-hole (e-h) Coulomb interaction (exciton effect) dominates over electron-phonon (e-ph) scattering, playing a pivotal role in an ultrafast bright-to-dark exciton transition with a relaxation time of ∼150 fs. Furthermore, the dark excitons undergo nonradiative recombination on a picosecond time scale (∼14 ps at room temperature). These results provide a theoretical foundation for potential nano-optoelectronic and light-energy harvesting applications of bilayer borophene.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.