Daniel Doveiko*, Lisa Asciak, Simon Stebbing, Wenmiao Shu, Karina Kubiak-Ossowska, David J. S. Birch and Yu Chen*,
{"title":"Quantitative Nanometrology of Binary Particle Systems Using Fluorescence Recovery after Photobleaching: Application to Colloidal Silica","authors":"Daniel Doveiko*, Lisa Asciak, Simon Stebbing, Wenmiao Shu, Karina Kubiak-Ossowska, David J. S. Birch and Yu Chen*, ","doi":"10.1021/acs.langmuir.5c01287","DOIUrl":null,"url":null,"abstract":"<p >We present an application of fluorescence recovery after photobleaching (FRAP) to measure the size of the individual nanoparticles in binary systems. The presence of nanoparticles with varying sizes was successfully demonstrated using a straightforward biexponential model and their sizes were accurately determined. Furthermore, we have demonstrated the benefits of preprocessing the data using a simple machine learning algorithm based on the gradient boosting machine and fitting the resulting curves to a triexponential model. This approach allows the accurate recovery of the sizes of each of the three components in a binary particle system, namely, the 6 nm LUDOX HS40, 11 nm LUDOX AS40, and the free R6G labeling dye. Lastly, it has been demonstrated using molecular dynamics simulations that R6G adsorption to silica nanoparticles (SNPs) is indeed size-dependent, with larger constructs as the preferred target because of their higher charge and smaller curvature. The theoretical and experimental results were therefore consistent with one another.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 29","pages":"19173–19182"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.5c01287","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c01287","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present an application of fluorescence recovery after photobleaching (FRAP) to measure the size of the individual nanoparticles in binary systems. The presence of nanoparticles with varying sizes was successfully demonstrated using a straightforward biexponential model and their sizes were accurately determined. Furthermore, we have demonstrated the benefits of preprocessing the data using a simple machine learning algorithm based on the gradient boosting machine and fitting the resulting curves to a triexponential model. This approach allows the accurate recovery of the sizes of each of the three components in a binary particle system, namely, the 6 nm LUDOX HS40, 11 nm LUDOX AS40, and the free R6G labeling dye. Lastly, it has been demonstrated using molecular dynamics simulations that R6G adsorption to silica nanoparticles (SNPs) is indeed size-dependent, with larger constructs as the preferred target because of their higher charge and smaller curvature. The theoretical and experimental results were therefore consistent with one another.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).