Meta-learning assisted robust control of universal quantum gates with uncertainties

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Shihui Zhang, Zibo Miao, Yu Pan, Sibo Tao, Yu Chen
{"title":"Meta-learning assisted robust control of universal quantum gates with uncertainties","authors":"Shihui Zhang, Zibo Miao, Yu Pan, Sibo Tao, Yu Chen","doi":"10.1038/s41534-025-01034-9","DOIUrl":null,"url":null,"abstract":"<p>Achieving high-fidelity quantum gates is crucial for reliable quantum computing. However, decoherence and control pulse imperfections pose significant challenges in realizing the theoretical fidelity of quantum gates in practical systems. To address these challenges, we propose the meta-reinforcement learning quantum control algorithm (metaQctrl), which leverages a two-layer learning framework to enhance robustness and fidelity. The inner reinforcement learning network focuses on decision making for specific optimization problems, while the outer meta-learning network adapts to varying environments and provides feedback to the inner network. Our comparative analysis regarding the realization of universal quantum gates demonstrates that metaQctrl achieves higher fidelity with fewer control pulses than conventional methods in the presence of uncertainties. These results can contribute to the exploration of the quantum speed limit and facilitate the implementation of quantum circuits with system imperfections involved.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"234 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01034-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high-fidelity quantum gates is crucial for reliable quantum computing. However, decoherence and control pulse imperfections pose significant challenges in realizing the theoretical fidelity of quantum gates in practical systems. To address these challenges, we propose the meta-reinforcement learning quantum control algorithm (metaQctrl), which leverages a two-layer learning framework to enhance robustness and fidelity. The inner reinforcement learning network focuses on decision making for specific optimization problems, while the outer meta-learning network adapts to varying environments and provides feedback to the inner network. Our comparative analysis regarding the realization of universal quantum gates demonstrates that metaQctrl achieves higher fidelity with fewer control pulses than conventional methods in the presence of uncertainties. These results can contribute to the exploration of the quantum speed limit and facilitate the implementation of quantum circuits with system imperfections involved.

Abstract Image

元学习辅助具有不确定性的通用量子门的鲁棒控制
实现高保真量子门对于可靠的量子计算至关重要。然而,退相干和控制脉冲的缺陷给在实际系统中实现量子门的理论保真度带来了重大挑战。为了解决这些挑战,我们提出了元强化学习量子控制算法(metaQctrl),它利用两层学习框架来增强鲁棒性和保真度。内部强化学习网络专注于特定优化问题的决策,而外部元学习网络适应不同的环境并向内部网络提供反馈。我们对通用量子门实现的比较分析表明,在存在不确定性的情况下,与传统方法相比,metaQctrl以更少的控制脉冲实现了更高的保真度。这些结果有助于探索量子速度极限,并促进涉及系统缺陷的量子电路的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信