{"title":"Meta-learning assisted robust control of universal quantum gates with uncertainties","authors":"Shihui Zhang, Zibo Miao, Yu Pan, Sibo Tao, Yu Chen","doi":"10.1038/s41534-025-01034-9","DOIUrl":null,"url":null,"abstract":"<p>Achieving high-fidelity quantum gates is crucial for reliable quantum computing. However, decoherence and control pulse imperfections pose significant challenges in realizing the theoretical fidelity of quantum gates in practical systems. To address these challenges, we propose the meta-reinforcement learning quantum control algorithm (metaQctrl), which leverages a two-layer learning framework to enhance robustness and fidelity. The inner reinforcement learning network focuses on decision making for specific optimization problems, while the outer meta-learning network adapts to varying environments and provides feedback to the inner network. Our comparative analysis regarding the realization of universal quantum gates demonstrates that metaQctrl achieves higher fidelity with fewer control pulses than conventional methods in the presence of uncertainties. These results can contribute to the exploration of the quantum speed limit and facilitate the implementation of quantum circuits with system imperfections involved.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"234 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01034-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving high-fidelity quantum gates is crucial for reliable quantum computing. However, decoherence and control pulse imperfections pose significant challenges in realizing the theoretical fidelity of quantum gates in practical systems. To address these challenges, we propose the meta-reinforcement learning quantum control algorithm (metaQctrl), which leverages a two-layer learning framework to enhance robustness and fidelity. The inner reinforcement learning network focuses on decision making for specific optimization problems, while the outer meta-learning network adapts to varying environments and provides feedback to the inner network. Our comparative analysis regarding the realization of universal quantum gates demonstrates that metaQctrl achieves higher fidelity with fewer control pulses than conventional methods in the presence of uncertainties. These results can contribute to the exploration of the quantum speed limit and facilitate the implementation of quantum circuits with system imperfections involved.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.