Controlled Solution Flow via Patterned Meniscus Assist for Elongated Exciton Diffusion Length to Approaching 20% Efficiency in Pseudo-Planar Heterojunction Organic Solar Cells

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Houdong Mao, Jiayou Zhang, Lin Wen, Licheng Tan, Yuhan Liu, Jihui Yang, Zhao Qin, Lifu Zhang, Yaxin Zhai, Yiwang Chen
{"title":"Controlled Solution Flow via Patterned Meniscus Assist for Elongated Exciton Diffusion Length to Approaching 20% Efficiency in Pseudo-Planar Heterojunction Organic Solar Cells","authors":"Houdong Mao, Jiayou Zhang, Lin Wen, Licheng Tan, Yuhan Liu, Jihui Yang, Zhao Qin, Lifu Zhang, Yaxin Zhai, Yiwang Chen","doi":"10.1002/adma.202505266","DOIUrl":null,"url":null,"abstract":"Precisely controlling the ideal vertical phase morphology of blade-coated pseudo-planar heterojunction (PPHJ) organic photovoltaics presents a key challenge due to Marangoni flow and coffee-ring effect, which further limits large-area film uniformity and shortens exciton diffusion length. Here, the patterned meniscus assist (PMA) strategy is used to stretch polymer chains and construct regular micropatterns to facilitate donor/acceptor inter-penetration, resulting in a high-performance printable PPHJ device with extended exciton diffusion length (from ≈45 to ≈56 nm). More importantly, micropatterns can mitigate Marangoni flow and promote film uniformity by enhancing solution flow. Consequently, the PPHJ device via PMA strategy exhibits one of the highest power conversion efficiencies (PCE) of 19.91% (certified as 19.63%) for the D18/BO-4Cl:L8-BO ternary system. Furthermore, the enlarged-area (1 and 16.94 cm<sup>2</sup>) devices show competitive PCEs of 18.90%/17.05% with one of the minimum PCE losses (5.07%/14.36%) during area expansion. This PMA strategy provides a feasible guiding avenue for realizing ideal active layer morphology to obtain large-scale, high-efficiency PPHJ devices.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"18 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202505266","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precisely controlling the ideal vertical phase morphology of blade-coated pseudo-planar heterojunction (PPHJ) organic photovoltaics presents a key challenge due to Marangoni flow and coffee-ring effect, which further limits large-area film uniformity and shortens exciton diffusion length. Here, the patterned meniscus assist (PMA) strategy is used to stretch polymer chains and construct regular micropatterns to facilitate donor/acceptor inter-penetration, resulting in a high-performance printable PPHJ device with extended exciton diffusion length (from ≈45 to ≈56 nm). More importantly, micropatterns can mitigate Marangoni flow and promote film uniformity by enhancing solution flow. Consequently, the PPHJ device via PMA strategy exhibits one of the highest power conversion efficiencies (PCE) of 19.91% (certified as 19.63%) for the D18/BO-4Cl:L8-BO ternary system. Furthermore, the enlarged-area (1 and 16.94 cm2) devices show competitive PCEs of 18.90%/17.05% with one of the minimum PCE losses (5.07%/14.36%) during area expansion. This PMA strategy provides a feasible guiding avenue for realizing ideal active layer morphology to obtain large-scale, high-efficiency PPHJ devices.

Abstract Image

准平面异质结有机太阳能电池中通过图案半月板辅助控制的溶液流动,使激子扩散长度接近20%的效率
由于Marangoni流动和咖啡环效应,精确控制叶片涂膜伪平面异质结(PPHJ)有机光伏电池的理想垂直相形态是一个关键挑战,这进一步限制了大面积薄膜的均匀性,缩短了激子扩散长度。在这里,图案半月板辅助(PMA)策略被用于拉伸聚合物链并构建规则的微图案,以促进供体/受体的相互渗透,从而产生具有扩展激子扩散长度(从≈45到≈56 nm)的高性能可打印PPHJ器件。更重要的是,微图案可以通过增强溶液流动来缓解Marangoni流动,促进膜的均匀性。因此,采用PMA策略的PPHJ器件在D18/BO-4Cl:L8-BO三元体系中表现出19.91%的最高功率转换效率(PCE)(认证为19.63%)。此外,扩大面积(1和16.94 cm2)器件的PCE为18.90%/17.05%,在面积扩大过程中PCE损失最小(5.07%/14.36%)。该PMA策略为实现理想的有源层形态以获得大规模、高效率的PPHJ器件提供了可行的指导途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信