{"title":"Determination of Jupiter’s primordial physical state","authors":"Konstantin Batygin, Fred C. Adams","doi":"10.1038/s41550-025-02512-y","DOIUrl":null,"url":null,"abstract":"<p>The formation and early evolution of Jupiter played a pivotal role in sculpting the large-scale architecture of the Solar System, intertwining the narrative of Jovian early years with the broader story of the Solar System’s origins. The details and chronology of Jupiter’s formation, however, remain elusive, primarily due to the inherent uncertainties of accretionary models, highlighting the need for independent constraints. Here we show that, by analysing the dynamics of Jupiter’s satellites concurrently with its angular-momentum budget, we can infer Jupiter’s radius and interior state at the time of the protosolar nebula’s dissipation. In particular, our calculations reveal that Jupiter was 2 to 2.5 times as large as it is today, 3.8 Myr after the formation of the first solids in the Solar System. Our model further indicates that young Jupiter possessed a magnetic field of <i>B</i><sub><span>♃</span></sub><sup>†</sup> ≈ 21 mT (a factor of ~ 50 higher than its present-day value) and was accreting material through a circum-Jovian disk at a rate of <span>\\(\\dot{M}=1.2\\)</span>–2.4 <i>M</i><sub><span>♃</span></sub> Myr<sup>−1</sup>. Our findings are fully consistent with the core-accretion theory of giant-planet formation and provide an evolutionary snapshot that pins down properties of the Jovian system at the end of the protosolar nebula’s lifetime.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"21 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02512-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The formation and early evolution of Jupiter played a pivotal role in sculpting the large-scale architecture of the Solar System, intertwining the narrative of Jovian early years with the broader story of the Solar System’s origins. The details and chronology of Jupiter’s formation, however, remain elusive, primarily due to the inherent uncertainties of accretionary models, highlighting the need for independent constraints. Here we show that, by analysing the dynamics of Jupiter’s satellites concurrently with its angular-momentum budget, we can infer Jupiter’s radius and interior state at the time of the protosolar nebula’s dissipation. In particular, our calculations reveal that Jupiter was 2 to 2.5 times as large as it is today, 3.8 Myr after the formation of the first solids in the Solar System. Our model further indicates that young Jupiter possessed a magnetic field of B♃† ≈ 21 mT (a factor of ~ 50 higher than its present-day value) and was accreting material through a circum-Jovian disk at a rate of \(\dot{M}=1.2\)–2.4 M♃ Myr−1. Our findings are fully consistent with the core-accretion theory of giant-planet formation and provide an evolutionary snapshot that pins down properties of the Jovian system at the end of the protosolar nebula’s lifetime.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.