Novel electrochromic polymers based on benzo[1,2-c:4,5-c']dithiophene-4,8-dione acceptor by varying different π-bridges and terminal active groups

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Pengjie Chao , Qicheng Su , Yuqing Liao , Daize Mo , Lanqing Li , Donghua Fan , Yizhong Shi , Dongling Shen
{"title":"Novel electrochromic polymers based on benzo[1,2-c:4,5-c']dithiophene-4,8-dione acceptor by varying different π-bridges and terminal active groups","authors":"Pengjie Chao ,&nbsp;Qicheng Su ,&nbsp;Yuqing Liao ,&nbsp;Daize Mo ,&nbsp;Lanqing Li ,&nbsp;Donghua Fan ,&nbsp;Yizhong Shi ,&nbsp;Dongling Shen","doi":"10.1016/j.polymer.2025.128557","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we designed and synthesized a series of donor (D)-π-acceptor (A)- π-donor (D) type monomers, namely ETBD, EEBD, TTBD and TEBD, by varying the different π-bridges and terminal active groups in monomeric backbone based on the benzo [1,2-c:4,5-c']dithiophene-4,8-dione acceptor. And then their corresponding polymers PTEBD, PETBD, PEEBD and PTTBD were synthesized by electrochemical polymerization. EEBD exhibited the most red-shifted absorption peak at 487 nm and the lowest <em>E</em><sub>onset</sub> of 0.44 V among these monomers. Notably, in comparison with PTEBD, polymers PETBD, PEEBD and PTTBD achieved much higher optical contrast of 50.93 % at 830 nm, 39.94 % at 660 nm and 45.65 % at 1100 nm, respectively. In addition, PTTBD possessed the best electrochromic performance and displayed a color transition from dark purple in the neutral state to grey in the oxidation state with the best coloration efficiency (<em>CE</em>) value of 570.84 cm<sup>2</sup> C<sup>−1</sup> at 1100 nm among these polymers. These results demonstrated that the strategy of varying the different π-bridges and terminal active groups in polymer backbone based on the benzo [1,2-c:4,5-c']dithiophene-4,8-dione acceptor could improve the electrochromic performance, offering a promising approach to the design of high-performance electrochromic polymers.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"332 ","pages":"Article 128557"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386125005439","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we designed and synthesized a series of donor (D)-π-acceptor (A)- π-donor (D) type monomers, namely ETBD, EEBD, TTBD and TEBD, by varying the different π-bridges and terminal active groups in monomeric backbone based on the benzo [1,2-c:4,5-c']dithiophene-4,8-dione acceptor. And then their corresponding polymers PTEBD, PETBD, PEEBD and PTTBD were synthesized by electrochemical polymerization. EEBD exhibited the most red-shifted absorption peak at 487 nm and the lowest Eonset of 0.44 V among these monomers. Notably, in comparison with PTEBD, polymers PETBD, PEEBD and PTTBD achieved much higher optical contrast of 50.93 % at 830 nm, 39.94 % at 660 nm and 45.65 % at 1100 nm, respectively. In addition, PTTBD possessed the best electrochromic performance and displayed a color transition from dark purple in the neutral state to grey in the oxidation state with the best coloration efficiency (CE) value of 570.84 cm2 C−1 at 1100 nm among these polymers. These results demonstrated that the strategy of varying the different π-bridges and terminal active groups in polymer backbone based on the benzo [1,2-c:4,5-c']dithiophene-4,8-dione acceptor could improve the electrochromic performance, offering a promising approach to the design of high-performance electrochromic polymers.

Abstract Image

基于苯并[1,2-c:4,5-c']二噻吩-4,8-二酮受体的新型电致变色聚合物的不同π桥和末端活性基团
本文以苯并[1,2-c:4,5-c']二噻吩-4,8-二酮为受体,通过改变单体主链上不同的π桥和末端活性基团,设计并合成了一系列给体(D)-π-受体(a)-π-给体(D)型单体,分别为ETBD、EEBD、TTBD和TEBD。然后采用电化学聚合的方法合成了相应的聚合物PTEBD、PETBD、PEEBD和PTTBD。在这些单体中,EEBD在487 nm处的吸收峰红移最大,Eonset最低,为0.44 V。值得注意的是,与PTEBD相比,聚合物PETBD、PEEBD和PTTBD在830 nm、660 nm和1100 nm的光学对比度分别达到50.93%、39.94%和45.65%。此外,PTTBD具有最佳的电致变色性能,从中性状态下的深紫色向氧化状态下的灰色过渡,在1100 nm处的最佳显色效率(CE)值为570.84 cm2 C-1。这些结果表明,以苯并[1,2-c:4,5-c']二噻吩-4,8-二酮受体为基础,改变聚合物主链中不同的π桥和末端活性基团的策略可以提高聚合物的电致变色性能,为高性能电致变色聚合物的设计提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信