Simulation of the crystallization process of Ge2Sb2Te5 nanoconfined in superlattice geometries for phase change memories†

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-05-20 DOI:10.1039/D5NR00283D
Debdipto Acharya, Omar Abou El Kheir, Simone Marcorini and Marco Bernasconi
{"title":"Simulation of the crystallization process of Ge2Sb2Te5 nanoconfined in superlattice geometries for phase change memories†","authors":"Debdipto Acharya, Omar Abou El Kheir, Simone Marcorini and Marco Bernasconi","doi":"10.1039/D5NR00283D","DOIUrl":null,"url":null,"abstract":"<p >Phase change materials are the most promising candidates for the realization of artificial synapses for neuromorphic computing. Different resistance levels corresponding to analogic values of the synapsis conductance can be achieved by modulating the size of an amorphous region embedded in its crystalline matrix. Recently, it has been proposed that a superlattice made of alternating layers of the phase change compound Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small> and of the TiTe<small><sub>2</sub></small> confining material allows for a better control of multiple intermediate resistance states and for a lower drift with time of the electrical resistance of the amorphous phase. In this work, we consider the substitution of Sb<small><sub>2</sub></small>Te<small><sub>3</sub></small> with the Ge<small><sub>2</sub></small>Sb<small><sub>2</sub></small>Te<small><sub>5</sub></small> prototypical phase change compound that should feature better data retention. By exploiting molecular dynamics simulations with a machine learning interatomic potential, we have investigated the crystallization kinetics of Ge<small><sub>2</sub></small>Sb<small><sub>2</sub></small>Te<small><sub>5</sub></small> nanoconfined in geometries mimicking Ge<small><sub>2</sub></small>Sb<small><sub>2</sub></small>Te<small><sub>5</sub></small>/TiTe<small><sub>2</sub></small> superlattices. It turns out that nanoconfinement induces a slight reduction in the crystal growth velocities with respect to the bulk, but also an enhancement of the nucleation rate due to heterogeneous nucleation. The results support the idea of investigating Ge<small><sub>2</sub></small>Sb<small><sub>2</sub></small>Te<small><sub>5</sub></small>/TiTe<small><sub>2</sub></small> superlattices for applications in neuromorphic devices with improved data retention. The effect on the crystallization kinetics of the addition of van der Waals interaction to the interatomic potential is also discussed.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 22","pages":" 13828-13841"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d5nr00283d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr00283d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Phase change materials are the most promising candidates for the realization of artificial synapses for neuromorphic computing. Different resistance levels corresponding to analogic values of the synapsis conductance can be achieved by modulating the size of an amorphous region embedded in its crystalline matrix. Recently, it has been proposed that a superlattice made of alternating layers of the phase change compound Sb2Te3 and of the TiTe2 confining material allows for a better control of multiple intermediate resistance states and for a lower drift with time of the electrical resistance of the amorphous phase. In this work, we consider the substitution of Sb2Te3 with the Ge2Sb2Te5 prototypical phase change compound that should feature better data retention. By exploiting molecular dynamics simulations with a machine learning interatomic potential, we have investigated the crystallization kinetics of Ge2Sb2Te5 nanoconfined in geometries mimicking Ge2Sb2Te5/TiTe2 superlattices. It turns out that nanoconfinement induces a slight reduction in the crystal growth velocities with respect to the bulk, but also an enhancement of the nucleation rate due to heterogeneous nucleation. The results support the idea of investigating Ge2Sb2Te5/TiTe2 superlattices for applications in neuromorphic devices with improved data retention. The effect on the crystallization kinetics of the addition of van der Waals interaction to the interatomic potential is also discussed.

Abstract Image

相变存储器中受限超晶格Ge2Sb2Te5纳米晶化过程的模拟
相变材料是实现神经形态计算人工突触最有前途的候选材料。不同的电阻水平对应于突触电导的类比值可以通过调制嵌入其晶体矩阵的非晶态区域的大小来实现。最近,有人提出,由相变化合物Sb2Te3和TiTe2约束材料交替层组成的超晶格可以更好地控制多个中间电阻状态,并且可以降低非晶相的电阻随时间的漂移。在这项工作中,我们考虑用Ge2Sb2Te5原型相变化合物取代Sb2Te3,该化合物应具有更好的数据保留性。通过利用分子动力学模拟和机器学习原子间势,我们研究了Ge2Sb2Te5纳米在模拟Ge2Sb2Te5/TiTe2超晶格中的结晶动力学。结果表明,纳米限制导致晶体生长速度相对于体积略有降低,但由于非均相成核,也提高了成核速率。研究结果支持了研究Ge2Sb2Te5/TiTe2超晶格在神经形态器件中的应用,提高了数据保留能力。讨论了原子间势中加入范德华相互作用对结晶动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信