Zheng Hu, Jun Zou, Zhengzhu Wang, Kai Xu, Tang Hai, Sheng Zhang, Peipei An, Cong Fu, Shuai Dong, Yanan Lv, Jilong Ren, Zhiqiang Han, Chongyang Li, Jing Wang, Qingwei Wang, Renren Sun, Long Su, Hanjing Zuo, Qinghao Ding, Huimin Tian, Xinlan An, Yanhui Zhai, Dawei Yu, Chang Shu, Jin He, Liguang Sun, Tianmeng Sun, Xiangpeng Dai, Ziyi Li, Wei Li, Qi Zhou, Yong-Guang Yang
{"title":"Long-term engraftment of human stem and progenitor cells for large-scale production of functional immune cells in engineered pigs","authors":"Zheng Hu, Jun Zou, Zhengzhu Wang, Kai Xu, Tang Hai, Sheng Zhang, Peipei An, Cong Fu, Shuai Dong, Yanan Lv, Jilong Ren, Zhiqiang Han, Chongyang Li, Jing Wang, Qingwei Wang, Renren Sun, Long Su, Hanjing Zuo, Qinghao Ding, Huimin Tian, Xinlan An, Yanhui Zhai, Dawei Yu, Chang Shu, Jin He, Liguang Sun, Tianmeng Sun, Xiangpeng Dai, Ziyi Li, Wei Li, Qi Zhou, Yong-Guang Yang","doi":"10.1038/s41551-025-01397-6","DOIUrl":null,"url":null,"abstract":"<p>Existing immunodeficient pig models have demonstrated limited success in supporting robust human haematopoietic engraftment and multilineage differentiation. Here we hypothesize that the targeted deletion of integrin-associated protein (Cd47) in severe combined immunodeficient pigs, with deletions in the X-linked interleukin-2 receptor gamma chain and recombination activating gene 1, would enable long-term haematopoietic engraftment following transplantation with human haematopoietic stem/progenitor cells. In Cd47-deficient pigs, we observed high levels of human haematopoietic chimerism in the blood and spleen, with functional T and B lymphocytes, natural killer and myeloid cells, as well as robust thymopoiesis. Our findings suggest that severe combined immunodeficient pigs with Cd47 deletion represent an improved preclinical model for studying human haematopoiesis, disease mechanisms and therapies, and offer potential as a bioreactor for large-scale production of human immune cells.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"38 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01397-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Existing immunodeficient pig models have demonstrated limited success in supporting robust human haematopoietic engraftment and multilineage differentiation. Here we hypothesize that the targeted deletion of integrin-associated protein (Cd47) in severe combined immunodeficient pigs, with deletions in the X-linked interleukin-2 receptor gamma chain and recombination activating gene 1, would enable long-term haematopoietic engraftment following transplantation with human haematopoietic stem/progenitor cells. In Cd47-deficient pigs, we observed high levels of human haematopoietic chimerism in the blood and spleen, with functional T and B lymphocytes, natural killer and myeloid cells, as well as robust thymopoiesis. Our findings suggest that severe combined immunodeficient pigs with Cd47 deletion represent an improved preclinical model for studying human haematopoiesis, disease mechanisms and therapies, and offer potential as a bioreactor for large-scale production of human immune cells.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.