{"title":"Navigating single-cell RNA-sequencing: protocols, tools, databases, and applications.","authors":"Ankish Arya, Prabhat Tripathi, Nidhi Dubey, Imlimaong Aier, Pritish Kumar Varadwaj","doi":"10.1186/s44342-025-00044-5","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA-sequencing (scRNA-seq) technology brought about a revolutionary change in the transcriptomic world, paving the way for comprehensive analysis of cellular heterogeneity in complex biological systems. It enabled researchers to see how different cells behaved at single-cell levels, providing new insights into the process. However, despite all these advancements, scRNA-seq also experiences challenges related to the complexity of data analysis, interpretation, and multi-omics data integration. In this review, these complications were discussed in detail, directly pointing at the optimization of scRNA-seq approaches and understanding the world of single-cell and its dynamics. Different protocols and currently functional single-cell databases were also covered. This review highlights different tools for the analysis of scRNA-seq and their methodologies, emphasizing innovative techniques that enhance resolution and accuracy at a single-cell level. Various applications were explored across domains including drug discovery, tumor microenvironment (TME), biomarker discovery, and microbial profiling, and case studies were discussed to explain the importance of scRNA-seq by uncovering novel and rare cell types and their identification. This review underlines a crucial aspect of scRNA-seq in the advancement of personalized medicine and highlights its potential to understand the complexity of biological systems.</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"23 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44342-025-00044-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell RNA-sequencing (scRNA-seq) technology brought about a revolutionary change in the transcriptomic world, paving the way for comprehensive analysis of cellular heterogeneity in complex biological systems. It enabled researchers to see how different cells behaved at single-cell levels, providing new insights into the process. However, despite all these advancements, scRNA-seq also experiences challenges related to the complexity of data analysis, interpretation, and multi-omics data integration. In this review, these complications were discussed in detail, directly pointing at the optimization of scRNA-seq approaches and understanding the world of single-cell and its dynamics. Different protocols and currently functional single-cell databases were also covered. This review highlights different tools for the analysis of scRNA-seq and their methodologies, emphasizing innovative techniques that enhance resolution and accuracy at a single-cell level. Various applications were explored across domains including drug discovery, tumor microenvironment (TME), biomarker discovery, and microbial profiling, and case studies were discussed to explain the importance of scRNA-seq by uncovering novel and rare cell types and their identification. This review underlines a crucial aspect of scRNA-seq in the advancement of personalized medicine and highlights its potential to understand the complexity of biological systems.