Weiyuan Wang, Bert F Prince, Alexander J Thorpe, Timothy J Brown, Brian M Barth
{"title":"Therapeutic Potential of Ceramide in Cancer Treatment.","authors":"Weiyuan Wang, Bert F Prince, Alexander J Thorpe, Timothy J Brown, Brian M Barth","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Ceramides are a family of wax-like lipids that fall under the broader category of sphingolipids. A ceramide is composed of a sphingosine side chain coupled to a fatty acid via an amide linkage. Distinct from complex sphingolipids, the head of ceramide is a simple alcohol rather than a phosphate, phosphocholine, sugar, or more. The fatty acid chains of ceramide can also vary in chain length and degree of saturation. The degree of saturation may determine the biological activity of the ceramide species. Ceramides are highly abundant within the cell membrane of eukaryotic cells and are appreciated for their structural roles in these cells. Moreover, ceramides are well-known for their biological activity including as regulators of apoptosis, senescence, the cell cycle, and differentiation. This review discusses pathways of ceramide, roles of ceramide in various diseases, targeting ceramide metabolism in the treatment of cancer, as well as ceramide-delivering nanotechnologies.</p>","PeriodicalId":92396,"journal":{"name":"Journal of cancer research and oncobiology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083856/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cancer research and oncobiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ceramides are a family of wax-like lipids that fall under the broader category of sphingolipids. A ceramide is composed of a sphingosine side chain coupled to a fatty acid via an amide linkage. Distinct from complex sphingolipids, the head of ceramide is a simple alcohol rather than a phosphate, phosphocholine, sugar, or more. The fatty acid chains of ceramide can also vary in chain length and degree of saturation. The degree of saturation may determine the biological activity of the ceramide species. Ceramides are highly abundant within the cell membrane of eukaryotic cells and are appreciated for their structural roles in these cells. Moreover, ceramides are well-known for their biological activity including as regulators of apoptosis, senescence, the cell cycle, and differentiation. This review discusses pathways of ceramide, roles of ceramide in various diseases, targeting ceramide metabolism in the treatment of cancer, as well as ceramide-delivering nanotechnologies.