Size- and polymer-dependent toxicity of amorphous environmentally relevant micro- and nanoplastics in human bronchial epithelial cells.

Microplastics and nanoplastics Pub Date : 2025-01-01 Epub Date: 2025-05-16 DOI:10.1186/s43591-025-00126-9
I F Gosselink, P Leonhardt, E M Höppener, R Smelt, M J Drittij, M Davigo, G G H van den Akker, I M Kooter, T J M Welting, F J van Schooten, A H V Remels
{"title":"Size- and polymer-dependent toxicity of amorphous environmentally relevant micro- and nanoplastics in human bronchial epithelial cells.","authors":"I F Gosselink, P Leonhardt, E M Höppener, R Smelt, M J Drittij, M Davigo, G G H van den Akker, I M Kooter, T J M Welting, F J van Schooten, A H V Remels","doi":"10.1186/s43591-025-00126-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Knowledge of the toxicological impact of micro- and nanoplastics (MNPs) on the human airway epithelium is limited and almost exclusively based on experiments applying high doses of spherical polystyrene (PS) particles. In this study, we investigated the toxicity of a broad size range of amorphous MNPs generated from different environmentally-relevant polymers.</p><p><strong>Methods: </strong>Bronchial epithelial cells (BEAS-2B) were exposed to three different doses of polyvinylchloride (PVC), polypropylene (PP), or polyamide (PA) particles (< 1 μm-10 μm), as well as leachates from these polymers. Toxicity was evaluated by assessment of cytotoxicity, inflammation (IL-8 release and inflammatory gene expression) and oxidative stress (DCFH-DA assay and antioxidant gene expression). Furthermore, the molecular mechanism behind MNP-induced inflammation was investigated by studying activation of two well-known inflammation related transcriptional factors (NF-κB and AP-1).</p><p><strong>Results: </strong>Only PA nanoplastics induced significant cell death, IL-8 secretion and inflammatory gene expression compared to vehicle control. PA-induced inflammation was accompanied by NF-κB, but not AP-1, transcriptional activity. PA did not increase cellular ROS levels; however, it did lead to increased expression of the antioxidant gene superoxide dismutase 2. In addition to PA, exposure to < 1 µm and 1-5 µm PP particles resulted in elevated IL-8 secretion, likely due to the presence of talc added as filler. None of the leachates affected cytotoxicity or inflammation.</p><p><strong>Conclusion: </strong>Toxicity of MNPs to human bronchial epithelial cells was dependent on polymer type, size and dose. Nanoplastics, especially PA, were more toxic to bronchial epithelial cells than microplastics and induced cytotoxicity and an inflammatory response.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1186/s43591-025-00126-9.</p>","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"5 1","pages":"19"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microplastics and nanoplastics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43591-025-00126-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Knowledge of the toxicological impact of micro- and nanoplastics (MNPs) on the human airway epithelium is limited and almost exclusively based on experiments applying high doses of spherical polystyrene (PS) particles. In this study, we investigated the toxicity of a broad size range of amorphous MNPs generated from different environmentally-relevant polymers.

Methods: Bronchial epithelial cells (BEAS-2B) were exposed to three different doses of polyvinylchloride (PVC), polypropylene (PP), or polyamide (PA) particles (< 1 μm-10 μm), as well as leachates from these polymers. Toxicity was evaluated by assessment of cytotoxicity, inflammation (IL-8 release and inflammatory gene expression) and oxidative stress (DCFH-DA assay and antioxidant gene expression). Furthermore, the molecular mechanism behind MNP-induced inflammation was investigated by studying activation of two well-known inflammation related transcriptional factors (NF-κB and AP-1).

Results: Only PA nanoplastics induced significant cell death, IL-8 secretion and inflammatory gene expression compared to vehicle control. PA-induced inflammation was accompanied by NF-κB, but not AP-1, transcriptional activity. PA did not increase cellular ROS levels; however, it did lead to increased expression of the antioxidant gene superoxide dismutase 2. In addition to PA, exposure to < 1 µm and 1-5 µm PP particles resulted in elevated IL-8 secretion, likely due to the presence of talc added as filler. None of the leachates affected cytotoxicity or inflammation.

Conclusion: Toxicity of MNPs to human bronchial epithelial cells was dependent on polymer type, size and dose. Nanoplastics, especially PA, were more toxic to bronchial epithelial cells than microplastics and induced cytotoxicity and an inflammatory response.

Graphical abstract:

Supplementary information: The online version contains supplementary material available at 10.1186/s43591-025-00126-9.

无定形环境相关微塑料和纳米塑料在人支气管上皮细胞中的大小和聚合物依赖性毒性。
背景:关于微塑料和纳米塑料(MNPs)对人类气道上皮的毒理学影响的知识是有限的,并且几乎完全基于使用高剂量球形聚苯乙烯(PS)颗粒的实验。在这项研究中,我们研究了由不同的环境相关聚合物产生的广泛尺寸的无定形MNPs的毒性。方法:将支气管上皮细胞(BEAS-2B)暴露于三种不同剂量的聚氯乙烯(PVC)、聚丙烯(PP)或聚酰胺(PA)颗粒中(结果:与对照相比,只有PA纳米塑料诱导了显著的细胞死亡、IL-8分泌和炎症基因表达。pa诱导的炎症反应伴有NF-κB的转录活性,但不伴有AP-1的转录活性。PA不增加细胞ROS水平;然而,它确实导致抗氧化基因超氧化物歧化酶2的表达增加。结论:MNPs对人支气管上皮细胞的毒性与聚合物类型、大小和剂量有关。纳米塑料,特别是PA,对支气管上皮细胞的毒性比微塑料更大,并诱导细胞毒性和炎症反应。图片摘要:补充资料:在线版本包含补充资料,网址为10.1186/s43591-025-00126-9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信