Investigating Ionic Diffusivity in Amorphous LiPON using Machine-Learned Interatomic Potentials.

IF 5.7 Q2 CHEMISTRY, PHYSICAL
ACS Materials Au Pub Date : 2025-02-05 eCollection Date: 2025-05-14 DOI:10.1021/acsmaterialsau.4c00117
Aqshat Seth, Rutvij Pankaj Kulkarni, Gopalakrishnan Sai Gautam
{"title":"Investigating Ionic Diffusivity in Amorphous LiPON using Machine-Learned Interatomic Potentials.","authors":"Aqshat Seth, Rutvij Pankaj Kulkarni, Gopalakrishnan Sai Gautam","doi":"10.1021/acsmaterialsau.4c00117","DOIUrl":null,"url":null,"abstract":"<p><p>Due to its immense importance as an amorphous solid electrolyte in thin-film devices, lithium phosphorus oxynitride (LiPON) has garnered significant scientific attention. However, investigating Li<sup>+</sup> transport within the LiPON framework, especially across a Li||LiPON interface, has proven challenging due to its amorphous nature and varying stoichiometry, necessitating large supercells and long time scales for computational models. Notably, machine-learned interatomic potentials (MLIPs) can combine the computational speed of classical force fields with the accuracy of density functional theory (DFT), making them the ideal tool for modeling such amorphous materials. Thus, in this work, we train and validate the neural equivariant interatomic potential (NequIP) framework on a comprehensive DFT-based data set consisting of 13,454 chemically relevant structures to describe LiPON. With optimized training (validation) energy and force mean absolute errors of 5.5 (6.1) meV/atom and 13.6 (13.2) meV/Å, respectively, we employ the trained potential to model Li transport in both bulk LiPON and across Li||LiPON interfaces. Amorphous LiPON structures generated by the optimized potential resemble those generated by <i>ab initio</i> molecular dynamics, with N being incorporated on nonbridging apical and bridging sites. Subsequent analysis of Li<sup>+</sup> diffusivity in the bulk LiPON structures indicates broad agreement with prior computational and experimental literature. Further, we investigate the anisotropy in Li<sup>+</sup> transport across the Li(110)||LiPON and Li(111)||LiPON interface, where we observe Li transport across the interface to be one order of magnitude slower than Li motion within the bulk Li and LiPON phases. Nevertheless, we note that this anisotropy of Li transport across the interface is minor, and we do not expect it to cause any significant impedance buildup. Finally, our work highlights the efficiency of MLIPs in enabling high-fidelity modeling of complex noncrystalline systems over large length and time scales.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 3","pages":"458-468"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmaterialsau.4c00117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its immense importance as an amorphous solid electrolyte in thin-film devices, lithium phosphorus oxynitride (LiPON) has garnered significant scientific attention. However, investigating Li+ transport within the LiPON framework, especially across a Li||LiPON interface, has proven challenging due to its amorphous nature and varying stoichiometry, necessitating large supercells and long time scales for computational models. Notably, machine-learned interatomic potentials (MLIPs) can combine the computational speed of classical force fields with the accuracy of density functional theory (DFT), making them the ideal tool for modeling such amorphous materials. Thus, in this work, we train and validate the neural equivariant interatomic potential (NequIP) framework on a comprehensive DFT-based data set consisting of 13,454 chemically relevant structures to describe LiPON. With optimized training (validation) energy and force mean absolute errors of 5.5 (6.1) meV/atom and 13.6 (13.2) meV/Å, respectively, we employ the trained potential to model Li transport in both bulk LiPON and across Li||LiPON interfaces. Amorphous LiPON structures generated by the optimized potential resemble those generated by ab initio molecular dynamics, with N being incorporated on nonbridging apical and bridging sites. Subsequent analysis of Li+ diffusivity in the bulk LiPON structures indicates broad agreement with prior computational and experimental literature. Further, we investigate the anisotropy in Li+ transport across the Li(110)||LiPON and Li(111)||LiPON interface, where we observe Li transport across the interface to be one order of magnitude slower than Li motion within the bulk Li and LiPON phases. Nevertheless, we note that this anisotropy of Li transport across the interface is minor, and we do not expect it to cause any significant impedance buildup. Finally, our work highlights the efficiency of MLIPs in enabling high-fidelity modeling of complex noncrystalline systems over large length and time scales.

利用机器学习原子间电位研究非晶LiPON中的离子扩散率。
由于其在薄膜器件中作为非晶固体电解质的巨大重要性,氮化磷锂(LiPON)已经获得了显著的科学关注。然而,研究Li+在LiPON框架内的输运,特别是在Li||LiPON界面上的输运,由于其无定形性质和不同的化学计量,需要大型超级电池和长时间尺度的计算模型,已被证明是具有挑战性的。值得注意的是,机器学习原子间势(MLIPs)可以将经典力场的计算速度与密度泛函理论(DFT)的精度结合起来,使其成为模拟此类非晶材料的理想工具。因此,在这项工作中,我们在一个基于dft的综合数据集上训练和验证了神经等变原子间势(NequIP)框架,该数据集由13,454个化学相关结构组成,用于描述LiPON。在优化的训练(验证)能量和力平均绝对误差分别为5.5 (6.1)meV/原子和13.6 (13.2)meV/Å的情况下,我们使用训练电位来模拟Li在大块LiPON和Li||LiPON界面中的输运。优化电位生成的无定形LiPON结构类似于从头算分子动力学生成的结构,N被纳入非桥接的顶端和桥接位点。随后对大块LiPON结构中Li+扩散率的分析表明,与先前的计算和实验文献广泛一致。此外,我们研究了Li+在Li(110)||LiPON和Li(111)||LiPON界面上输运的各向异性,我们观察到Li+在Li(110)||LiPON和Li(111)||LiPON界面上的输运比Li在大块Li和LiPON相中的运动慢一个数量级。然而,我们注意到Li输运在界面上的这种各向异性是次要的,我们不期望它引起任何显著的阻抗积累。最后,我们的工作强调了MLIPs在大长度和时间尺度上实现复杂非晶体系统高保真建模的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信