Bryan A Corzo, Hugo Hernández-Martínez, Eugenia Josefina Aldeco-Pérez, Jorge Cárdenas, Víctor Lara, Lilian I Olvera
{"title":"Functionalized Imidazolium Ether-Free Polymer Backbones with Ion Transport Channels and Catalytic Activity.","authors":"Bryan A Corzo, Hugo Hernández-Martínez, Eugenia Josefina Aldeco-Pérez, Jorge Cárdenas, Víctor Lara, Lilian I Olvera","doi":"10.1021/acsmaterialsau.4c00154","DOIUrl":null,"url":null,"abstract":"<p><p>Novel ether-free bond polymer backbones were synthesized through polycondensation in a superacid medium by using <i>p</i>-terphenyl and 4-(1<i>H</i>-imidazol-1-yl)benzaldehyde. The presence of imidazolium groups enabled further modifications through a highly efficient nucleophilic substitution reaction introducing cationic sites essential for anionic transport. Characterization by NMR and FTIR analyses confirmed the structures and the complete functionalization of the base polymer. Critical properties for potential anion exchange membrane applications, including water uptake, ion exchange capacity, ion conductivity, morphology, and thermal and mechanical stabilities were investigated. Results indicated that these polymers form stable ion transport channels, with the formation of distinctive hydrophilic/hydrophobic microphase separation in the membranes observed through AFM, HR-TEM, and SAXS analyses. This structural configuration of the membranes exhibited high hydroxide conductivities of 61.33 and 80.33 mS/cm at 80 °C for 1AIM (quaternization with iodomethane) and 1ABPTA (quaternization with (3-bromopropyl)trimethylammonium bromide), respectively, with a thermal stability up to 240 °C, underscoring their suitability for electrochemical applications. Additionally, an organometallic polymer was successfully synthesized from the 1ABPTA polymer due to the presence of an imidazolium salt, <i>N</i>-heterocyclic carbene (NHC) ligand precursor. SEM images displayed the homogeneous distribution of metal atoms, and XPS spectra confirmed the formation of the C-M bond. The material obtained was utilized as a heterogeneous catalyst in a C-C Suzuki-Miyaura coupling reaction, achieving catalytic conversion percentages of 70% and 60% for the first and second cycles, respectively.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 3","pages":"508-521"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082359/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmaterialsau.4c00154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Novel ether-free bond polymer backbones were synthesized through polycondensation in a superacid medium by using p-terphenyl and 4-(1H-imidazol-1-yl)benzaldehyde. The presence of imidazolium groups enabled further modifications through a highly efficient nucleophilic substitution reaction introducing cationic sites essential for anionic transport. Characterization by NMR and FTIR analyses confirmed the structures and the complete functionalization of the base polymer. Critical properties for potential anion exchange membrane applications, including water uptake, ion exchange capacity, ion conductivity, morphology, and thermal and mechanical stabilities were investigated. Results indicated that these polymers form stable ion transport channels, with the formation of distinctive hydrophilic/hydrophobic microphase separation in the membranes observed through AFM, HR-TEM, and SAXS analyses. This structural configuration of the membranes exhibited high hydroxide conductivities of 61.33 and 80.33 mS/cm at 80 °C for 1AIM (quaternization with iodomethane) and 1ABPTA (quaternization with (3-bromopropyl)trimethylammonium bromide), respectively, with a thermal stability up to 240 °C, underscoring their suitability for electrochemical applications. Additionally, an organometallic polymer was successfully synthesized from the 1ABPTA polymer due to the presence of an imidazolium salt, N-heterocyclic carbene (NHC) ligand precursor. SEM images displayed the homogeneous distribution of metal atoms, and XPS spectra confirmed the formation of the C-M bond. The material obtained was utilized as a heterogeneous catalyst in a C-C Suzuki-Miyaura coupling reaction, achieving catalytic conversion percentages of 70% and 60% for the first and second cycles, respectively.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications