{"title":"Enhanced secretion through type 1 secretion system by grafting a calcium-binding sequence to modify the folding of cargo proteins.","authors":"Ryo Uehara, Yuka Kamiya, Shuta Maeda, Keisuke Okamoto, Shuntaro Toya, Ryohei Chiba, Hiroshi Amesaka, Kazufumi Takano, Hiroyoshi Matsumura, Shun-Ichi Tanaka","doi":"10.1002/pro.70165","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular secretion is a beneficial way to produce recombinant proteins at an industrial scale. Among bacterial secretion systems, the type 1 secretion system (T1SS) in Gram-negative bacteria is particularly attractive due to its simple architecture involving only three proteins and one-step translocation across both inner and outer membranes. However, proteins that fold rapidly within the cell often fail to pass through the narrow T1SS channel tunnel, limiting its industrial application. To address this limitation, we engineered a 10-amino-acid calcium-binding sequence (CBS) that disrupts proximal secondary structures through electrostatic repulsion at low Ca<sup>2+</sup> concentrations, thereby inhibiting premature folding of target proteins in the cell. We demonstrated that CBS-grafted variants of three fast-folding proteins-mRFP1, RNase H1, and monobody-were efficiently secreted by Escherichia coli expressing the Serratia marcescens Lip T1SS as compared to their parental proteins. Remarkably, the CBS-grafted variants were fully active and structurally identical to the intracellularly produced parental proteins when isolated from culture supernatants. Furthermore, the removal of Ca<sup>2+</sup> from CBS did not compromise the structure or function, indicating that the CBS-mediated calcium-dependent folding was irreversible. Our work will expand the utility of T1SS for secreting diverse proteins, paving the way for broader industrial applications.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 6","pages":"e70165"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086511/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70165","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular secretion is a beneficial way to produce recombinant proteins at an industrial scale. Among bacterial secretion systems, the type 1 secretion system (T1SS) in Gram-negative bacteria is particularly attractive due to its simple architecture involving only three proteins and one-step translocation across both inner and outer membranes. However, proteins that fold rapidly within the cell often fail to pass through the narrow T1SS channel tunnel, limiting its industrial application. To address this limitation, we engineered a 10-amino-acid calcium-binding sequence (CBS) that disrupts proximal secondary structures through electrostatic repulsion at low Ca2+ concentrations, thereby inhibiting premature folding of target proteins in the cell. We demonstrated that CBS-grafted variants of three fast-folding proteins-mRFP1, RNase H1, and monobody-were efficiently secreted by Escherichia coli expressing the Serratia marcescens Lip T1SS as compared to their parental proteins. Remarkably, the CBS-grafted variants were fully active and structurally identical to the intracellularly produced parental proteins when isolated from culture supernatants. Furthermore, the removal of Ca2+ from CBS did not compromise the structure or function, indicating that the CBS-mediated calcium-dependent folding was irreversible. Our work will expand the utility of T1SS for secreting diverse proteins, paving the way for broader industrial applications.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).