Thinles Chondol, Jorge Gago, Jaume Flexas, Javier Gulías, María José Clemente-Moreno, Jan Binter, Jiří Doležal
{"title":"Surviving the Extremes: Seasonal Dynamics of Photochemical Performance in Plants From Cold-Arid Himalayan Mountains.","authors":"Thinles Chondol, Jorge Gago, Jaume Flexas, Javier Gulías, María José Clemente-Moreno, Jan Binter, Jiří Doležal","doi":"10.1111/ppl.70269","DOIUrl":null,"url":null,"abstract":"<p><p>Plants in extreme environments face pronounced seasonal variations in abiotic conditions, influencing their growth and carbon gain. However, our understanding of how plants in cold-arid mountains sustain carbon assimilation during short growing seasons remains limited. Here, we investigate seasonal dynamics and interspecific variability in photochemical performance of 310 individuals, comprising 10 different dicotyledon plant species across 3100-5300 m in the NW Himalayas, spanning semi-deserts to subnival zones. From early June to late September, we measured F<sub>v</sub>/F<sub>m</sub> and ΦPSII, assessing ΦPSII relationships with leaf traits (N, P, C, C:N ratio, LMA, and LDMC) and environmental factors (temperature, soil moisture content, etc.). Our findings revealed that high-Himalayan plants maintained relatively stable photosynthetic performance (F<sub>v</sub>/F<sub>m</sub> = 0.7-0.85), indicating optimal function even under potential stress. Contrary to our hypothesis that ΦPSII peaks mid-season in alpine and subnival zones and early season in steppes and semi-deserts, it declined by 33% across species and habitats throughout the season. This decline was closely associated with nutrient depletion, leaf senescence, and energy-water limitations. Species exhibited distinct strategies, with some prioritising structural resilience over photosynthesis, while others optimised photochemical performance despite environmental constraints. Alpine and subnival plant performance was constrained more by soil moisture deficits and high temperatures than cold temperatures, while deep-rooted steppe and semi-desert plants were primarily constrained by high temperatures and evaporative forcing rather than soil moisture deficit. These results provide new insights into how Himalayan plants adapt to extreme environmental conditions, highlighting the crucial interplay between moisture and temperature in shaping their performance within cold-arid mountains.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70269"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087433/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70269","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plants in extreme environments face pronounced seasonal variations in abiotic conditions, influencing their growth and carbon gain. However, our understanding of how plants in cold-arid mountains sustain carbon assimilation during short growing seasons remains limited. Here, we investigate seasonal dynamics and interspecific variability in photochemical performance of 310 individuals, comprising 10 different dicotyledon plant species across 3100-5300 m in the NW Himalayas, spanning semi-deserts to subnival zones. From early June to late September, we measured Fv/Fm and ΦPSII, assessing ΦPSII relationships with leaf traits (N, P, C, C:N ratio, LMA, and LDMC) and environmental factors (temperature, soil moisture content, etc.). Our findings revealed that high-Himalayan plants maintained relatively stable photosynthetic performance (Fv/Fm = 0.7-0.85), indicating optimal function even under potential stress. Contrary to our hypothesis that ΦPSII peaks mid-season in alpine and subnival zones and early season in steppes and semi-deserts, it declined by 33% across species and habitats throughout the season. This decline was closely associated with nutrient depletion, leaf senescence, and energy-water limitations. Species exhibited distinct strategies, with some prioritising structural resilience over photosynthesis, while others optimised photochemical performance despite environmental constraints. Alpine and subnival plant performance was constrained more by soil moisture deficits and high temperatures than cold temperatures, while deep-rooted steppe and semi-desert plants were primarily constrained by high temperatures and evaporative forcing rather than soil moisture deficit. These results provide new insights into how Himalayan plants adapt to extreme environmental conditions, highlighting the crucial interplay between moisture and temperature in shaping their performance within cold-arid mountains.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.