Shailendra Mohan Tripathi, Christopher J McNeil, Roger T Staff, Alison D Murray, Claude M Wischik, Bjoern Schelter, Gordan D Waiter
{"title":"FDG-PET Image Classification in Alzheimer's Disease: from Traditional Visual Analysis to Advanced Transfer Learning.","authors":"Shailendra Mohan Tripathi, Christopher J McNeil, Roger T Staff, Alison D Murray, Claude M Wischik, Bjoern Schelter, Gordan D Waiter","doi":"10.1007/s13139-025-00908-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Alzheimer's disease (AD) often coexists with other brain pathologies, and we aimed to classify people with AD using 18 F- Flouro-Deoxy-Glucose-Positron Emission Tomography (FDG-PET).</p><p><strong>Method: </strong>Baseline FDG-PET data were collected as part of two large scale Phase III clinical trials of a novel tau aggregation inhibitor drug, Leuco-Methylthioninium (LMTX®). A total of 794, well-characterised probable AD subjects were included in the study and the images were classified into \"typical AD\"(temporoparietal hypometabolism) and \"mixed\" (patchy hypo-metabolism in other vascular territories of brain such as frontal and cerebellar regions along with temporo-parietal hypo-metabolism) patterns based on visual interpretation. The differences in the two groups were further assessed with region-of-interest based analysis of Standardized Uptake Value Ratio (SUVR) and automated classification using transfer learning with visual classification as the gold standard.</p><p><strong>Results: </strong>Of the total of 794 (438 female) participants, 533 (284 female) were classified as typical AD and 261 (154 female) participants classified as mixed. A subset of 50 images each from typical and mixed subtypes were used for transfer learning and sensitivity, specificity and accuracy for one of the cross-validation loops was 94.73%, 95.23% and 95% respectively. The average accuracy to distinguish the two subtypes after 5-fold cross validation was found to be 97.5%.</p><p><strong>Conclusions: </strong>This study is first of its kind to distinguish two subtypes of AD through visual interpretation of FDG-PET images and exploring the findings with a semi-quantitative method followed by transfer learning, which has been used to predict the two subtypes with high accuracy, sensitivity and specificity.</p>","PeriodicalId":19384,"journal":{"name":"Nuclear Medicine and Molecular Imaging","volume":"59 3","pages":"201-208"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084429/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Medicine and Molecular Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13139-025-00908-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Alzheimer's disease (AD) often coexists with other brain pathologies, and we aimed to classify people with AD using 18 F- Flouro-Deoxy-Glucose-Positron Emission Tomography (FDG-PET).
Method: Baseline FDG-PET data were collected as part of two large scale Phase III clinical trials of a novel tau aggregation inhibitor drug, Leuco-Methylthioninium (LMTX®). A total of 794, well-characterised probable AD subjects were included in the study and the images were classified into "typical AD"(temporoparietal hypometabolism) and "mixed" (patchy hypo-metabolism in other vascular territories of brain such as frontal and cerebellar regions along with temporo-parietal hypo-metabolism) patterns based on visual interpretation. The differences in the two groups were further assessed with region-of-interest based analysis of Standardized Uptake Value Ratio (SUVR) and automated classification using transfer learning with visual classification as the gold standard.
Results: Of the total of 794 (438 female) participants, 533 (284 female) were classified as typical AD and 261 (154 female) participants classified as mixed. A subset of 50 images each from typical and mixed subtypes were used for transfer learning and sensitivity, specificity and accuracy for one of the cross-validation loops was 94.73%, 95.23% and 95% respectively. The average accuracy to distinguish the two subtypes after 5-fold cross validation was found to be 97.5%.
Conclusions: This study is first of its kind to distinguish two subtypes of AD through visual interpretation of FDG-PET images and exploring the findings with a semi-quantitative method followed by transfer learning, which has been used to predict the two subtypes with high accuracy, sensitivity and specificity.
期刊介绍:
Nuclear Medicine and Molecular Imaging (Nucl Med Mol Imaging) is an official journal of the Korean Society of Nuclear Medicine, which bimonthly publishes papers on February, April, June, August, October, and December about nuclear medicine and related sciences such as radiochemistry, radiopharmacy, dosimetry and pharmacokinetics / pharmacodynamics of radiopharmaceuticals, nuclear and molecular imaging analysis, nuclear and molecular imaging instrumentation, radiation biology and radionuclide therapy. The journal specially welcomes works of artificial intelligence applied to nuclear medicine. The journal will also welcome original works relating to molecular imaging research such as the development of molecular imaging probes, reporter imaging assays, imaging cell trafficking, imaging endo(exo)genous gene expression, and imaging signal transduction. Nucl Med Mol Imaging publishes the following types of papers: original articles, reviews, case reports, editorials, interesting images, and letters to the editor.
The Korean Society of Nuclear Medicine (KSNM)
KSNM is a scientific and professional organization founded in 1961 and a member of the Korean Academy of Medical Sciences of the Korean Medical Association which was established by The Medical Services Law. The aims of KSNM are the promotion of nuclear medicine and cooperation of each member. The business of KSNM includes holding academic meetings and symposia, the publication of journals and books, planning and research of promoting science and health, and training and qualification of nuclear medicine specialists.