Portable Ultrasound Bladder Volume Measurement Over Entire Volume Range Using a Deep Learning Artificial Intelligence Model in a Selected Cohort: A Proof of Principle Study.
Hyun Ju Jeong, Aeran Seol, Seungjun Lee, Hyunji Lim, Maria Lee, Seung-June Oh
{"title":"Portable Ultrasound Bladder Volume Measurement Over Entire Volume Range Using a Deep Learning Artificial Intelligence Model in a Selected Cohort: A Proof of Principle Study.","authors":"Hyun Ju Jeong, Aeran Seol, Seungjun Lee, Hyunji Lim, Maria Lee, Seung-June Oh","doi":"10.1002/nau.70057","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We aimed to prospectively investigate whether bladder volume measured using deep learning artificial intelligence (AI) algorithms (AI-BV) is more accurate than that measured using conventional methods (C-BV) if using a portable ultrasound bladder scanner (PUBS).</p><p><strong>Patients and methods: </strong>Patients who underwent filling cystometry because of lower urinary tract symptoms between January 2021 and July 2022 were enrolled. Every time the bladder was filled serially with normal saline from 0 mL to maximum cystometric capacity in 50 mL increments, C-BV was measured using PUBS. Ultrasound images obtained during this process were manually annotated to define the bladder contour, which was used to build a deep learning AI model. The true bladder volume (T-BV) for each bladder volume range was compared with C-BV and AI-BV for analysis.</p><p><strong>Results: </strong>We enrolled 250 patients (213 men and 37 women), and a deep learning AI model was established using 1912 bladder images. There was a significant difference between C-BV (205.5 ± 170.8 mL) and T-BV (190.5 ± 165.7 mL) (p = 0.001), but no significant difference between AI-BV (197.0 ± 161.1 mL) and T-BV (190.5 ± 165.7 mL) (p = 0.081). In bladder volume ranges of 101-150, 151-200, and 201-300 mL, there were significant differences in the percentage of volume differences between [C-BV and T-BV] and [AI-BV and T-BV] (p < 0.05), but no significant difference if converted to absolute values (p > 0.05). C-BV (R<sup>2</sup> = 0.91, p < 0.001) and AI-BV (R<sup>2</sup> = 0.90, p < 0.001) were highly correlated with T-BV. The mean difference between AI-BV and T-BV (6.5 ± 50.4) was significantly smaller than that between C-BV and T-BV (15.0 ± 50.9) (p = 0.001).</p><p><strong>Conclusion: </strong>Following image pre-processing, deep learning AI-BV more accurately estimated true BV than conventional methods in this selected cohort on internal validation. Determination of the clinical relevance of these findings and performance in external cohorts requires further study.</p><p><strong>Trial registration: </strong>The clinical trial was conducted using an approved product for its approved indication, so approval from the Ministry of Food and Drug Safety (MFDS) was not required. Therefore, there is no clinical trial registration number.</p>","PeriodicalId":19200,"journal":{"name":"Neurourology and Urodynamics","volume":" ","pages":"1238-1244"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurourology and Urodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nau.70057","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: We aimed to prospectively investigate whether bladder volume measured using deep learning artificial intelligence (AI) algorithms (AI-BV) is more accurate than that measured using conventional methods (C-BV) if using a portable ultrasound bladder scanner (PUBS).
Patients and methods: Patients who underwent filling cystometry because of lower urinary tract symptoms between January 2021 and July 2022 were enrolled. Every time the bladder was filled serially with normal saline from 0 mL to maximum cystometric capacity in 50 mL increments, C-BV was measured using PUBS. Ultrasound images obtained during this process were manually annotated to define the bladder contour, which was used to build a deep learning AI model. The true bladder volume (T-BV) for each bladder volume range was compared with C-BV and AI-BV for analysis.
Results: We enrolled 250 patients (213 men and 37 women), and a deep learning AI model was established using 1912 bladder images. There was a significant difference between C-BV (205.5 ± 170.8 mL) and T-BV (190.5 ± 165.7 mL) (p = 0.001), but no significant difference between AI-BV (197.0 ± 161.1 mL) and T-BV (190.5 ± 165.7 mL) (p = 0.081). In bladder volume ranges of 101-150, 151-200, and 201-300 mL, there were significant differences in the percentage of volume differences between [C-BV and T-BV] and [AI-BV and T-BV] (p < 0.05), but no significant difference if converted to absolute values (p > 0.05). C-BV (R2 = 0.91, p < 0.001) and AI-BV (R2 = 0.90, p < 0.001) were highly correlated with T-BV. The mean difference between AI-BV and T-BV (6.5 ± 50.4) was significantly smaller than that between C-BV and T-BV (15.0 ± 50.9) (p = 0.001).
Conclusion: Following image pre-processing, deep learning AI-BV more accurately estimated true BV than conventional methods in this selected cohort on internal validation. Determination of the clinical relevance of these findings and performance in external cohorts requires further study.
Trial registration: The clinical trial was conducted using an approved product for its approved indication, so approval from the Ministry of Food and Drug Safety (MFDS) was not required. Therefore, there is no clinical trial registration number.
期刊介绍:
Neurourology and Urodynamics welcomes original scientific contributions from all parts of the world on topics related to urinary tract function, urinary and fecal continence and pelvic floor function.