Celine Santiago, Julianna Siegrist, Nusrat Africawala, Annie Handler, Aniqa Tasnim, Rabia Anjum, Josef Turecek, Brendan P Lehnert, Sophia Renauld, Jinheon Choi, Michael Nolan-Tamariz, Michael Iskols, Alexandra R Magee, Suzanne Paradis, Nikhil Sharma, David D Ginty
{"title":"Activity-dependent development of the body's touch receptors.","authors":"Celine Santiago, Julianna Siegrist, Nusrat Africawala, Annie Handler, Aniqa Tasnim, Rabia Anjum, Josef Turecek, Brendan P Lehnert, Sophia Renauld, Jinheon Choi, Michael Nolan-Tamariz, Michael Iskols, Alexandra R Magee, Suzanne Paradis, Nikhil Sharma, David D Ginty","doi":"10.1016/j.neuron.2025.04.015","DOIUrl":null,"url":null,"abstract":"<p><p>We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end-organ structures. Peripheral-nervous-system-specific deletion of the voltage-gated sodium channel Na<sub>v</sub>1.6 (Scn8a), which resulted in altered electrophysiological responses to mechanical stimuli, also disrupted somatosensory neuron morphologies, supporting a role for neuronal activity in end-organ formation. Single-cell RNA sequencing of Piezo2 mutants revealed changes in gene expression in sensory neurons activated by light mechanical forces, whereas other neuronal classes were minimally affected, and genetic deletion of Piezo2-dependent genes partially reproduced the defects in mechanosensory neuron structures observed in Piezo2 mutants. These findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of mechanosensory end-organs that underlie our sense of gentle touch.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"1758-1773.e9"},"PeriodicalIF":14.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.04.015","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end-organ structures. Peripheral-nervous-system-specific deletion of the voltage-gated sodium channel Nav1.6 (Scn8a), which resulted in altered electrophysiological responses to mechanical stimuli, also disrupted somatosensory neuron morphologies, supporting a role for neuronal activity in end-organ formation. Single-cell RNA sequencing of Piezo2 mutants revealed changes in gene expression in sensory neurons activated by light mechanical forces, whereas other neuronal classes were minimally affected, and genetic deletion of Piezo2-dependent genes partially reproduced the defects in mechanosensory neuron structures observed in Piezo2 mutants. These findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of mechanosensory end-organs that underlie our sense of gentle touch.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.