Tyrosol ameliorates depressive-like behavior and hippocampal damage in perimenopausal depression rats by inhibiting oxidative stress and thyroid dysfunction
Xiaolong Sun , Meng Zhao , Xu Wang , Yinuo Sun , Jing Li , Yan Zhang , Youzhi Zhang , Xiaoling Feng
{"title":"Tyrosol ameliorates depressive-like behavior and hippocampal damage in perimenopausal depression rats by inhibiting oxidative stress and thyroid dysfunction","authors":"Xiaolong Sun , Meng Zhao , Xu Wang , Yinuo Sun , Jing Li , Yan Zhang , Youzhi Zhang , Xiaoling Feng","doi":"10.1016/j.neulet.2025.138266","DOIUrl":null,"url":null,"abstract":"<div><div>Perimenopausal depression (PMD) is a common condition during the female perimenopausal period. Tyrosol represents a promising neuroprotective agent. This study aims to determine if tyrosol alleviate PMD progression. A rat model of PMD was established using bilateral ovariectomy and chronic unpredictable mild stress. Behavioral tests showed that tyrosol alleviated the depressive-like behavior in PMD rats. Tyrosol increased sucrose preference in SPT and residence time in the central region of OFT, and reduced immobility time in FST of PMD rats. Apoptosis of neurons in the hippocampus of PMD rats was inhibited by tyrosol treatment, as evidenced by an increase in the protein expression of Bcl-2 and a decrease in the expression of Bax and cleaved caspase-3 in hippocampal tissue. Tyrosol treatment effectively reduced thyroid-stimulating hormone levels and elevated the levels of free triiodothyronine and free thyroxine in the serum of PMD rats. The levels of ROS and MDA were decreased, and the levels of GPX and SOD were increased in the hippocampal tissue of PMD rats by tyrosol treatment. In addition, tyrosol treatment promoted the levels of brain-derived neurotrophic factor (BDNF) and monoamine neurotransmitters (5-HT, DA, and NA) in the hippocampal tissue. In summary, tyrosol might ameliorate depression-like behavior in PMD rats by inhibiting hippocampal oxidative stress and damage and promoting monoamine neurotransmitter release, and restoration of thyroid function may also be involved.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"859 ","pages":"Article 138266"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025001545","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Perimenopausal depression (PMD) is a common condition during the female perimenopausal period. Tyrosol represents a promising neuroprotective agent. This study aims to determine if tyrosol alleviate PMD progression. A rat model of PMD was established using bilateral ovariectomy and chronic unpredictable mild stress. Behavioral tests showed that tyrosol alleviated the depressive-like behavior in PMD rats. Tyrosol increased sucrose preference in SPT and residence time in the central region of OFT, and reduced immobility time in FST of PMD rats. Apoptosis of neurons in the hippocampus of PMD rats was inhibited by tyrosol treatment, as evidenced by an increase in the protein expression of Bcl-2 and a decrease in the expression of Bax and cleaved caspase-3 in hippocampal tissue. Tyrosol treatment effectively reduced thyroid-stimulating hormone levels and elevated the levels of free triiodothyronine and free thyroxine in the serum of PMD rats. The levels of ROS and MDA were decreased, and the levels of GPX and SOD were increased in the hippocampal tissue of PMD rats by tyrosol treatment. In addition, tyrosol treatment promoted the levels of brain-derived neurotrophic factor (BDNF) and monoamine neurotransmitters (5-HT, DA, and NA) in the hippocampal tissue. In summary, tyrosol might ameliorate depression-like behavior in PMD rats by inhibiting hippocampal oxidative stress and damage and promoting monoamine neurotransmitter release, and restoration of thyroid function may also be involved.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.