MULti-TImepoint VElocity-selective Reconciled with Spatially-sElective (MULTIVERSE) ASL: Improving robustness to both shortened and prolonged arterial transit time.
IF 3 3区 医学Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Feng Xu, Dan Zhu, Dapeng Liu, Anja Soldan, Marilyn Albert, Martin A Lindquist, Doris D M Lin, Qin Qin
{"title":"MULti-TImepoint VElocity-selective Reconciled with Spatially-sElective (MULTIVERSE) ASL: Improving robustness to both shortened and prolonged arterial transit time.","authors":"Feng Xu, Dan Zhu, Dapeng Liu, Anja Soldan, Marilyn Albert, Martin A Lindquist, Doris D M Lin, Qin Qin","doi":"10.1002/mrm.30540","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To improve the quantification of existing multi-timepoint arterial spin labeling (ASL) methods in estimating cerebral blood flow (CBF) and arterial transit time (ATT) for a wider range of ATTs.</p><p><strong>Methods: </strong>MULti-TImepoint VElocity-selective Reconciled with Spatially-sElective (MULTIVERSE) ASL utilizes multi-delay pseudo-continuous (PC) ASL and velocity-selective (VS) ASL with spatially defined bolus, and joint fitting to estimate CBF and ATT. Numerical simulations were performed to evaluate the accuracy and precision of single-delay and multi-delay PCASL and VSASL, as well as the proposed MULTIVERSE ASL, in quantifying CBF and ATT across an extended range of ATTs. The CBF and ATT estimates between multi-delay PCASL, VSASL, and MULTIVERSE ASL were compared across healthy volunteers.</p><p><strong>Results: </strong>Numerical simulations showed that the utility of MULTIVERSE ASL improved the accuracy and precision over an extended ATT range of up to 4000 ms. In vivo scans from healthy subjects demonstrated that MULTIVERSE ASL led to reduced uncertainty in CBF and ATT quantification compared to multi-post-labeling delay PCASL while maintaining comparable repeatability.</p><p><strong>Conclusion: </strong>This novel and straightforward approach improves the accuracy and precision of the fitted CBF and ATT over an extended range of ATT, which is not possible with existing ASL methods. Brain scans from healthy subjects demonstrated the feasibility and reliability of the technique, highlighting the clinical potential of ASL-based perfusion mapping in various altered physiological and pathological conditions.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30540","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To improve the quantification of existing multi-timepoint arterial spin labeling (ASL) methods in estimating cerebral blood flow (CBF) and arterial transit time (ATT) for a wider range of ATTs.
Methods: MULti-TImepoint VElocity-selective Reconciled with Spatially-sElective (MULTIVERSE) ASL utilizes multi-delay pseudo-continuous (PC) ASL and velocity-selective (VS) ASL with spatially defined bolus, and joint fitting to estimate CBF and ATT. Numerical simulations were performed to evaluate the accuracy and precision of single-delay and multi-delay PCASL and VSASL, as well as the proposed MULTIVERSE ASL, in quantifying CBF and ATT across an extended range of ATTs. The CBF and ATT estimates between multi-delay PCASL, VSASL, and MULTIVERSE ASL were compared across healthy volunteers.
Results: Numerical simulations showed that the utility of MULTIVERSE ASL improved the accuracy and precision over an extended ATT range of up to 4000 ms. In vivo scans from healthy subjects demonstrated that MULTIVERSE ASL led to reduced uncertainty in CBF and ATT quantification compared to multi-post-labeling delay PCASL while maintaining comparable repeatability.
Conclusion: This novel and straightforward approach improves the accuracy and precision of the fitted CBF and ATT over an extended range of ATT, which is not possible with existing ASL methods. Brain scans from healthy subjects demonstrated the feasibility and reliability of the technique, highlighting the clinical potential of ASL-based perfusion mapping in various altered physiological and pathological conditions.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.