Andreas M Vestergaard, Wasti Nurani, Paul Cachera, Uffe H Mortensen
{"title":"Chaperone overexpression boosts heterologous small molecule production in Saccharomyces cerevisiae.","authors":"Andreas M Vestergaard, Wasti Nurani, Paul Cachera, Uffe H Mortensen","doi":"10.1186/s12934-025-02728-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chaperones play an important role in maintaining cellular proteostasis by mediating protein folding. As a result, chaperone overexpression has been widely used as a tool for enhancing folding and improving production of heterologous proteins in host organisms such as Saccharomyces cerevisiae. In contrast, this strategy has been much less explored for small molecule (SM) production. This is surprising, as SM pathways typically depend on multiple enzymes including large multi-domain synthases or synthetases, which may all benefit from folding assistance to enhance the catalytic power of the pathway.</p><p><strong>Results: </strong>We have established an S. cerevisiae strain library of 68 strains overexpressing endogenous cytosolic chaperones and a mating-based method that allows the chaperone library to be combined with a query strain that contains the pathway of a desirable SM. Using the small molecule aspulvinone E from Aspergillus terreus as a model compound, we screened the chaperone library for chaperones that improve production of aspulvinone E. Screening of the library identified several chaperones and chaperone combinations that improved aspulvinone E production. Specifically, the combined overexpression of YDJ1 and SSA1 was identified as the best hit in our screen. Subsequently, we demonstrated that overexpression of YDJ1 and SSA1 improved aspulvinone E production by 84% in 1.5 mL scale batch fermentations. The observed increase is likely due to higher levels of the MelA synthetase responsible for aspulvinone E synthesis, as overexpression of YDJ1 and SSA1 increases the amounts of fluorescent MelA-mRFP in cells producing this fusion protein.</p><p><strong>Conclusion: </strong>The endogenous cytosolic chaperone overexpression library and mating based screening method presented in this report constitute a tool allowing for fast and efficient identification of specific chaperones and chaperone combinations that benefit production of a given SM in S. cerevisiae-based cell factories.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"112"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02728-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chaperones play an important role in maintaining cellular proteostasis by mediating protein folding. As a result, chaperone overexpression has been widely used as a tool for enhancing folding and improving production of heterologous proteins in host organisms such as Saccharomyces cerevisiae. In contrast, this strategy has been much less explored for small molecule (SM) production. This is surprising, as SM pathways typically depend on multiple enzymes including large multi-domain synthases or synthetases, which may all benefit from folding assistance to enhance the catalytic power of the pathway.
Results: We have established an S. cerevisiae strain library of 68 strains overexpressing endogenous cytosolic chaperones and a mating-based method that allows the chaperone library to be combined with a query strain that contains the pathway of a desirable SM. Using the small molecule aspulvinone E from Aspergillus terreus as a model compound, we screened the chaperone library for chaperones that improve production of aspulvinone E. Screening of the library identified several chaperones and chaperone combinations that improved aspulvinone E production. Specifically, the combined overexpression of YDJ1 and SSA1 was identified as the best hit in our screen. Subsequently, we demonstrated that overexpression of YDJ1 and SSA1 improved aspulvinone E production by 84% in 1.5 mL scale batch fermentations. The observed increase is likely due to higher levels of the MelA synthetase responsible for aspulvinone E synthesis, as overexpression of YDJ1 and SSA1 increases the amounts of fluorescent MelA-mRFP in cells producing this fusion protein.
Conclusion: The endogenous cytosolic chaperone overexpression library and mating based screening method presented in this report constitute a tool allowing for fast and efficient identification of specific chaperones and chaperone combinations that benefit production of a given SM in S. cerevisiae-based cell factories.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems