Zachary Zajac, Brandon Helfield, Ross Williams, Paul Sheeran, Charles Tremblay-Darveau, Kimoon Yoo, Peter N Burns
{"title":"Investigation of Phase-Change Droplets and Fast Imaging for Indicator Dilution Measurement of Flow.","authors":"Zachary Zajac, Brandon Helfield, Ross Williams, Paul Sheeran, Charles Tremblay-Darveau, Kimoon Yoo, Peter N Burns","doi":"10.1002/jum.16722","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The development of low boiling point liquid droplets as phase-change contrast agents allows for the local creation of microbubbles at a point of interest in vivo. Although there are many possible applications, few investigations have used selectively created microbubble boluses to measure volumetric flowrate. In this study, the flow ratio between two vessels is calculated by vaporizing droplets in each vessel individually.</p><p><strong>Methods: </strong>Proof of principle is demonstrated in vitro by an imaging sequence that vaporizes droplets using a high mechanical index pulse, then images the transit of the resulting microbubbles at a high frame rate using low mechanical index plane waves.</p><p><strong>Results: </strong>It is shown that a linear relationship exists between the concentration of droplets and enhancement of the resulting microbubble bolus. In vitro flow is measured with a mean error of 8% in a 0.66 cm diameter vessel and with a mean error of 33% in a 0.49 cm diameter vessel. The relative volumetric flow between two adjacent vessels is calculated with a mean percentage error of 25% when imaging the region of droplet vaporization for flow ratios between 0.25 and 4.</p><p><strong>Conclusions: </strong>This in vitro study demonstrates the feasibility of using a positive bolus tracer, induced by image-guided ultrasound excitation, to measure flow. Potential applications include measurement of the portal vein to hepatic artery flow ratio, known as the hepatic perfusion index.</p>","PeriodicalId":17563,"journal":{"name":"Journal of Ultrasound in Medicine","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasound in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jum.16722","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The development of low boiling point liquid droplets as phase-change contrast agents allows for the local creation of microbubbles at a point of interest in vivo. Although there are many possible applications, few investigations have used selectively created microbubble boluses to measure volumetric flowrate. In this study, the flow ratio between two vessels is calculated by vaporizing droplets in each vessel individually.
Methods: Proof of principle is demonstrated in vitro by an imaging sequence that vaporizes droplets using a high mechanical index pulse, then images the transit of the resulting microbubbles at a high frame rate using low mechanical index plane waves.
Results: It is shown that a linear relationship exists between the concentration of droplets and enhancement of the resulting microbubble bolus. In vitro flow is measured with a mean error of 8% in a 0.66 cm diameter vessel and with a mean error of 33% in a 0.49 cm diameter vessel. The relative volumetric flow between two adjacent vessels is calculated with a mean percentage error of 25% when imaging the region of droplet vaporization for flow ratios between 0.25 and 4.
Conclusions: This in vitro study demonstrates the feasibility of using a positive bolus tracer, induced by image-guided ultrasound excitation, to measure flow. Potential applications include measurement of the portal vein to hepatic artery flow ratio, known as the hepatic perfusion index.
期刊介绍:
The Journal of Ultrasound in Medicine (JUM) is dedicated to the rapid, accurate publication of original articles dealing with all aspects of medical ultrasound, particularly its direct application to patient care but also relevant basic science, advances in instrumentation, and biological effects. The journal is an official publication of the American Institute of Ultrasound in Medicine and publishes articles in a variety of categories, including Original Research papers, Review Articles, Pictorial Essays, Technical Innovations, Case Series, Letters to the Editor, and more, from an international bevy of countries in a continual effort to showcase and promote advances in the ultrasound community.
Represented through these efforts are a wide variety of disciplines of ultrasound, including, but not limited to:
-Basic Science-
Breast Ultrasound-
Contrast-Enhanced Ultrasound-
Dermatology-
Echocardiography-
Elastography-
Emergency Medicine-
Fetal Echocardiography-
Gastrointestinal Ultrasound-
General and Abdominal Ultrasound-
Genitourinary Ultrasound-
Gynecologic Ultrasound-
Head and Neck Ultrasound-
High Frequency Clinical and Preclinical Imaging-
Interventional-Intraoperative Ultrasound-
Musculoskeletal Ultrasound-
Neurosonology-
Obstetric Ultrasound-
Ophthalmologic Ultrasound-
Pediatric Ultrasound-
Point-of-Care Ultrasound-
Public Policy-
Superficial Structures-
Therapeutic Ultrasound-
Ultrasound Education-
Ultrasound in Global Health-
Urologic Ultrasound-
Vascular Ultrasound