Hae-Sun Ko, Kwonyoung Kim, Yu-Ran Na, Chang-Hwan Yeom, Chu Won Nho, Yoon Shin Cho, Jihoe Kim, Kye Won Park
{"title":"Phenethyl Isothiocyanate (PEITC) interaction with Keap1 activates the Nrf2 pathway and inhibits lipid accumulation in adipocytes.","authors":"Hae-Sun Ko, Kwonyoung Kim, Yu-Ran Na, Chang-Hwan Yeom, Chu Won Nho, Yoon Shin Cho, Jihoe Kim, Kye Won Park","doi":"10.1016/j.jnutbio.2025.109963","DOIUrl":null,"url":null,"abstract":"<p><p>Phenethyl isothiocyanate (PEITC) has been recognized for its potential effects in various human diseases. However, the impact of PEITC on adipocyte differentiation and its underlying molecular mechanisms is not well understood. This study investigates the effects of PEITC on adipocyte differentiation and elucidates the molecular mechanisms involved in Nrf2 activation. The effects of PEITC on adipocyte differentiation were assessed in C3H10T1/2 and 3T3-L1 cells. Nrf2-induced effects by PEITC were examined in Nrf2 knockout (KO) MEF and Keap1 KO H1299 cells. The interaction between PEITC and Keap1 was evaluated using thermal shift assays and Co-immunoprecipitation experiments. Reconstitution of cysteine mutants of Keap1 in Keap1 KO cells was used to elucidate a critical amino acid for the PEITC-induced Nrf2 stabilization. The initial stages of adipogenesis were crucial for PEITC's anti-adipogenic effects in C3H10T1/2 and 3T3-L1 cells. PEITC increased Nrf2 protein expression, but this induction was absent in Keap1 KO cells. Thermal shift assays with the purified BTB domain of Keap1 confirmed a direct interaction with PEITC. Re-expression of Keap1 in Keap1 KO cells showed that the cysteine residue at position 151 is essential for PEITC-induced Nrf2 expression and the disruption of the Nrf2-Keap1 complex. PEITC was found to activate Nrf2-mediated gene expression and inhibit adipocyte differentiation, at least partially, through Nrf2-dependent mechanisms. This study confirms the anti-adipogenic effects of PEITC. Mechanistic investigations demonstrate that PEITC interacts with Keap1 and that the cysteine residue (C151) of Keap1 is critical for PEITC's effects on Nrf2 activation.</p>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":" ","pages":"109963"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnutbio.2025.109963","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phenethyl isothiocyanate (PEITC) has been recognized for its potential effects in various human diseases. However, the impact of PEITC on adipocyte differentiation and its underlying molecular mechanisms is not well understood. This study investigates the effects of PEITC on adipocyte differentiation and elucidates the molecular mechanisms involved in Nrf2 activation. The effects of PEITC on adipocyte differentiation were assessed in C3H10T1/2 and 3T3-L1 cells. Nrf2-induced effects by PEITC were examined in Nrf2 knockout (KO) MEF and Keap1 KO H1299 cells. The interaction between PEITC and Keap1 was evaluated using thermal shift assays and Co-immunoprecipitation experiments. Reconstitution of cysteine mutants of Keap1 in Keap1 KO cells was used to elucidate a critical amino acid for the PEITC-induced Nrf2 stabilization. The initial stages of adipogenesis were crucial for PEITC's anti-adipogenic effects in C3H10T1/2 and 3T3-L1 cells. PEITC increased Nrf2 protein expression, but this induction was absent in Keap1 KO cells. Thermal shift assays with the purified BTB domain of Keap1 confirmed a direct interaction with PEITC. Re-expression of Keap1 in Keap1 KO cells showed that the cysteine residue at position 151 is essential for PEITC-induced Nrf2 expression and the disruption of the Nrf2-Keap1 complex. PEITC was found to activate Nrf2-mediated gene expression and inhibit adipocyte differentiation, at least partially, through Nrf2-dependent mechanisms. This study confirms the anti-adipogenic effects of PEITC. Mechanistic investigations demonstrate that PEITC interacts with Keap1 and that the cysteine residue (C151) of Keap1 is critical for PEITC's effects on Nrf2 activation.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.