Janina Dutke, Jonas Gehlenborg, Miriam Heise, Wolfgang Hamel, Christian Gerloff, Götz Thomalla, Tim Magnus, Andreas K Engel, Christian Ke Moll, Alessandro Gulberti, Monika Pötter-Nerger
{"title":"Effects of theta burst stimulation on the Parkinsonian gait disorder and cortical gait-network activity.","authors":"Janina Dutke, Jonas Gehlenborg, Miriam Heise, Wolfgang Hamel, Christian Gerloff, Götz Thomalla, Tim Magnus, Andreas K Engel, Christian Ke Moll, Alessandro Gulberti, Monika Pötter-Nerger","doi":"10.1177/1877718X251320941","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundThe Parkinsonian gait disorder and freezing of gait (FoG) are challenging symptoms of Parkinson's disease (PD).ObjectiveTo assess the effect of subthalamic theta burst deep brain stimulation (TBS-DBS) on the Parkinsonian gait performance in real-world conditions and cortical activity indexed by mobile EEG.MethodsIn this monocentric, randomised, double-blind, short-term study, 12 age-matched controls (11 male, age 59 ± 8 years) and 15 PD participants (14 male, age 62 ± 9 years, disease duration 15 ± 6 years) with subthalamic stimulation (76 ± 39 months) were assessed with clinical scores (FoG-Course, MDS-UPDRS) and a standardized gait course simulating everyday life situations. Three DBS algorithms were applied in a randomized order with intertrial waiting periods of 30 min: (1) OFF-DBS; (2) cDBS; (3) TBS-DBS (interburst frequency 5 Hz, intraburst frequency 200 Hz) with regular medication. During the standardized gait course a mobile, 24-channel EEG system and 6 wearable axial kinematic sensors were used.ResultsThe primary outcome, the relative change of FoG-Course by DBS, was not superior with TBS-DBS compared to cDBS in the entire sample. Seven of fifteen PD participants rated subjectively TBS-DBS equal or better than cDBS (\"TBS-preference group\"). EEG recordings revealed movement-induced alpha and beta suppression in premotor and motor cortex in both cDBS and TBS-DBS conditions in PD with slightly different patterns between the DBS modes.ConclusionsIn this pilot trial, TBS-DBS showed benefits in the subjective perception of gait in a subgroup of PD patients accompanied by specific cortical network changes. TBS-DBS merits further investigation in future larger cohort studies with longer observation periods.</p>","PeriodicalId":16660,"journal":{"name":"Journal of Parkinson's disease","volume":" ","pages":"1877718X251320941"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parkinson's disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1877718X251320941","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundThe Parkinsonian gait disorder and freezing of gait (FoG) are challenging symptoms of Parkinson's disease (PD).ObjectiveTo assess the effect of subthalamic theta burst deep brain stimulation (TBS-DBS) on the Parkinsonian gait performance in real-world conditions and cortical activity indexed by mobile EEG.MethodsIn this monocentric, randomised, double-blind, short-term study, 12 age-matched controls (11 male, age 59 ± 8 years) and 15 PD participants (14 male, age 62 ± 9 years, disease duration 15 ± 6 years) with subthalamic stimulation (76 ± 39 months) were assessed with clinical scores (FoG-Course, MDS-UPDRS) and a standardized gait course simulating everyday life situations. Three DBS algorithms were applied in a randomized order with intertrial waiting periods of 30 min: (1) OFF-DBS; (2) cDBS; (3) TBS-DBS (interburst frequency 5 Hz, intraburst frequency 200 Hz) with regular medication. During the standardized gait course a mobile, 24-channel EEG system and 6 wearable axial kinematic sensors were used.ResultsThe primary outcome, the relative change of FoG-Course by DBS, was not superior with TBS-DBS compared to cDBS in the entire sample. Seven of fifteen PD participants rated subjectively TBS-DBS equal or better than cDBS ("TBS-preference group"). EEG recordings revealed movement-induced alpha and beta suppression in premotor and motor cortex in both cDBS and TBS-DBS conditions in PD with slightly different patterns between the DBS modes.ConclusionsIn this pilot trial, TBS-DBS showed benefits in the subjective perception of gait in a subgroup of PD patients accompanied by specific cortical network changes. TBS-DBS merits further investigation in future larger cohort studies with longer observation periods.
期刊介绍:
The Journal of Parkinson''s Disease (JPD) publishes original research in basic science, translational research and clinical medicine in Parkinson’s disease in cooperation with the Journal of Alzheimer''s Disease. It features a first class Editorial Board and provides rigorous peer review and rapid online publication.