{"title":"Mechanism of nitrous oxide (HONO) formation in D-layer of ionosphere.","authors":"Hiroto Tachikawa","doi":"10.1063/5.0271255","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrous oxide (HONO) is an active oxidant and a major source of hydroxyl radicals in the D-layer of the ionosphere (60-90 km above the Earth's surface). However, the mechanism underlying the formation of HONO remains unclear. To elucidate the mechanism of HONO formation, sequential (stepwise) reactions of H2O with NO+ were investigated using direct ab initio molecular dynamics calculations. The target reactions were NO+(H2O) + H2O and NO+(H2O)2 + H2O, i.e., NO+(H2O)n-1 + H2O → HONO-H+(H2O)n-1 (HONO product) (n = 2-5). In the case of n = 2, only the solvation of NO+ by H2O was found: NO+(H2O) + H2O → NO+(H2O)n (solvation product) (n = 2). HONO was obtained as the product at n = 3, although the reaction efficiency was low. The HONO product was efficiently formed when n = 4-5. The mechanism of HONO formation and the role of H2O in the reactions are discussed based on theoretical analysis.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0271255","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrous oxide (HONO) is an active oxidant and a major source of hydroxyl radicals in the D-layer of the ionosphere (60-90 km above the Earth's surface). However, the mechanism underlying the formation of HONO remains unclear. To elucidate the mechanism of HONO formation, sequential (stepwise) reactions of H2O with NO+ were investigated using direct ab initio molecular dynamics calculations. The target reactions were NO+(H2O) + H2O and NO+(H2O)2 + H2O, i.e., NO+(H2O)n-1 + H2O → HONO-H+(H2O)n-1 (HONO product) (n = 2-5). In the case of n = 2, only the solvation of NO+ by H2O was found: NO+(H2O) + H2O → NO+(H2O)n (solvation product) (n = 2). HONO was obtained as the product at n = 3, although the reaction efficiency was low. The HONO product was efficiently formed when n = 4-5. The mechanism of HONO formation and the role of H2O in the reactions are discussed based on theoretical analysis.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.