Mechanism of nitrous oxide (HONO) formation in D-layer of ionosphere.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Hiroto Tachikawa
{"title":"Mechanism of nitrous oxide (HONO) formation in D-layer of ionosphere.","authors":"Hiroto Tachikawa","doi":"10.1063/5.0271255","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrous oxide (HONO) is an active oxidant and a major source of hydroxyl radicals in the D-layer of the ionosphere (60-90 km above the Earth's surface). However, the mechanism underlying the formation of HONO remains unclear. To elucidate the mechanism of HONO formation, sequential (stepwise) reactions of H2O with NO+ were investigated using direct ab initio molecular dynamics calculations. The target reactions were NO+(H2O) + H2O and NO+(H2O)2 + H2O, i.e., NO+(H2O)n-1 + H2O → HONO-H+(H2O)n-1 (HONO product) (n = 2-5). In the case of n = 2, only the solvation of NO+ by H2O was found: NO+(H2O) + H2O → NO+(H2O)n (solvation product) (n = 2). HONO was obtained as the product at n = 3, although the reaction efficiency was low. The HONO product was efficiently formed when n = 4-5. The mechanism of HONO formation and the role of H2O in the reactions are discussed based on theoretical analysis.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0271255","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrous oxide (HONO) is an active oxidant and a major source of hydroxyl radicals in the D-layer of the ionosphere (60-90 km above the Earth's surface). However, the mechanism underlying the formation of HONO remains unclear. To elucidate the mechanism of HONO formation, sequential (stepwise) reactions of H2O with NO+ were investigated using direct ab initio molecular dynamics calculations. The target reactions were NO+(H2O) + H2O and NO+(H2O)2 + H2O, i.e., NO+(H2O)n-1 + H2O → HONO-H+(H2O)n-1 (HONO product) (n = 2-5). In the case of n = 2, only the solvation of NO+ by H2O was found: NO+(H2O) + H2O → NO+(H2O)n (solvation product) (n = 2). HONO was obtained as the product at n = 3, although the reaction efficiency was low. The HONO product was efficiently formed when n = 4-5. The mechanism of HONO formation and the role of H2O in the reactions are discussed based on theoretical analysis.

电离层d层氧化亚氮(HONO)形成机理。
一氧化二氮(HONO)是一种活性氧化剂,也是电离层d层(距地球表面60-90公里)羟基自由基的主要来源。然而,HONO形成的机制尚不清楚。为了阐明HONO形成的机理,采用直接从头算分子动力学方法研究了H2O与NO+的顺序(逐步)反应。目标反应为NO+(H2O) + H2O和NO+(H2O)2 + H2O,即NO+(H2O)n-1 + H2O→HONO- h +(H2O)n-1 (HONO产物)(n = 2-5)。当n = 2时,只发现NO+被H2O溶剂化:NO+(H2O) + H2O→NO+(H2O)n(溶剂化产物)(n = 2)。虽然反应效率较低,但在n = 3时得到的产物为HONO。当n = 4-5时,能有效形成HONO产物。在理论分析的基础上,讨论了HONO的形成机理和H2O在反应中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信