{"title":"Iodine recombination in xenon solvent: Clusters in the gas to liquid-like state transition.","authors":"M Mirakhory, A Majumdar, M Ihme, A C T van Duin","doi":"10.1063/5.0260087","DOIUrl":null,"url":null,"abstract":"<p><p>Supercritical fluids (SCFs) have attracted significant attention as solvents for chemical reactions due to their unique properties, such as high diffusivity, low viscosity, and tunable solvation properties. These properties profoundly influence reaction kinetics and are often attributed to the formation of molecular clusters within SCFs. To study the effect of supercritical solvent on chemical reactivity and dynamics of reactions, one needs to understand the dynamics of clusters in supercritical fluid. Extensive experiments on the photodissociation and recombination of iodine in supercritical fluids served as a model system for understanding these effects. Experimental studies have been complemented by theoretical and computational investigations, which mostly employ Monte Carlo or empirical molecular dynamics simulations. However, computational studies using non-reactive force fields and ab initio approaches present challenges in capturing reactive processes at larger scales within supercritical fluids. In this work, we developed the ReaxFF parameters by training against quantum mechanics data. ReaxFF reactive force field based molecular dynamics simulations were performed, studying the dynamics of a xenon solvent and cage effect at different thermodynamic conditions for the iodine recombination reaction. We show that the conditions near the critical point are the optimal conditions to study the cage effect. We show that the average lifetime of xenon clusters ranging between 5 and 11 ps is comparable to iodine geminate recombination. Our simulation results of iodine recombination in xenon solvent demonstrate the higher probability of iodine molecule formation in the presence of xenon clusters. Finally, we show that the supercritical condition exhibits the highest recombination rate for iodine atoms.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0260087","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Supercritical fluids (SCFs) have attracted significant attention as solvents for chemical reactions due to their unique properties, such as high diffusivity, low viscosity, and tunable solvation properties. These properties profoundly influence reaction kinetics and are often attributed to the formation of molecular clusters within SCFs. To study the effect of supercritical solvent on chemical reactivity and dynamics of reactions, one needs to understand the dynamics of clusters in supercritical fluid. Extensive experiments on the photodissociation and recombination of iodine in supercritical fluids served as a model system for understanding these effects. Experimental studies have been complemented by theoretical and computational investigations, which mostly employ Monte Carlo or empirical molecular dynamics simulations. However, computational studies using non-reactive force fields and ab initio approaches present challenges in capturing reactive processes at larger scales within supercritical fluids. In this work, we developed the ReaxFF parameters by training against quantum mechanics data. ReaxFF reactive force field based molecular dynamics simulations were performed, studying the dynamics of a xenon solvent and cage effect at different thermodynamic conditions for the iodine recombination reaction. We show that the conditions near the critical point are the optimal conditions to study the cage effect. We show that the average lifetime of xenon clusters ranging between 5 and 11 ps is comparable to iodine geminate recombination. Our simulation results of iodine recombination in xenon solvent demonstrate the higher probability of iodine molecule formation in the presence of xenon clusters. Finally, we show that the supercritical condition exhibits the highest recombination rate for iodine atoms.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.