{"title":"Fenofibrate mitigates the dysfunction of high glucose-driven human retinal microvascular endothelial cells by suppressing NLRP3 inflammasome.","authors":"Yi Shi, Hao-Min Chen, Ai-Hua Liu, Xiao-Rong Li","doi":"10.18240/ijo.2025.05.04","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To determine the therapeutic benefits of fenofibrate (Feno) on the dysfunction of high glucose (HG)-induced human retinal microvascular endothelial cells (HRMECs) and to elucidate the underlying molecular mechanism.</p><p><strong>Methods: </strong>HRMEC dysfunction model was established by 48h glucose (30 mmol/L) treatment and treated with Feno/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activator (Nigericin). Cell viability/apoptosis were assessed by cell counting kit-8 (CCK-8)/terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining and flow cytometry assays. Levels of apoptosis- (Bcl-2-associated X protein, Bax/B-cell lymphoma 2, Bcl-2), vascular permeability-(vascular endothelial growth factor, VEGF) and inflammasome activation-related proteins (NLRP3/cleaved caspase-1/apoptosis-associated speck-like protein containing a CARD, ASC), as well as inflammatory factors (interleukin, IL-6/IL-1β/tumor necrosis factor, TNF-α/IL-18) were determined with Western blot/enzyme linked immunosorbent assay (ELISA). Cell permeability/reactive oxygen species (ROS) level/superoxide dismutase (SOD) activity/malondialdehyde (MDA) content were assessed by Evans blue staining/2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescent probe/SOD kit/MDA kit.</p><p><strong>Results: </strong>HRMEC dysfunction was successfully induced by HG, evidenced by decreased viability (<i>P</i><0.001), increased apoptosis (<i>P</i><0.001), permeability (<i>P</i><0.001), and inflammatory factor levels (<i>P</i><0.001). Feno treatment significantly ameliorated HG-induced HRMEC dysfunction (<i>P</i><0.01). Meanwhile, HG induction increased ROS production (<i>P</i><0.001) and MDA content (<i>P</i><0.001) in HRMECs, while reducing SOD activity (<i>P</i><0.001), indicative of oxidative stress. This was, however, abolished by Feno (<i>P</i><0.05). Moreover, Feno eliminated activation of NLRP3 inflammasomes (<i>P</i><0.05) in HG-induced HRMECs. Strikingly, activation of NLRP3 inflammasomes partially averted the inhibition of Feno on HG-induced HRMEC dysfunction (<i>P</i><0.05).</p><p><strong>Conclusion: </strong>Feno represses oxidative stress and NLRP3 inflammasome activation, consequently alleviating HG-induced HRMEC dysfunction.</p>","PeriodicalId":14312,"journal":{"name":"International journal of ophthalmology","volume":"18 5","pages":"792-801"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043296/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18240/ijo.2025.05.04","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To determine the therapeutic benefits of fenofibrate (Feno) on the dysfunction of high glucose (HG)-induced human retinal microvascular endothelial cells (HRMECs) and to elucidate the underlying molecular mechanism.
Methods: HRMEC dysfunction model was established by 48h glucose (30 mmol/L) treatment and treated with Feno/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activator (Nigericin). Cell viability/apoptosis were assessed by cell counting kit-8 (CCK-8)/terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining and flow cytometry assays. Levels of apoptosis- (Bcl-2-associated X protein, Bax/B-cell lymphoma 2, Bcl-2), vascular permeability-(vascular endothelial growth factor, VEGF) and inflammasome activation-related proteins (NLRP3/cleaved caspase-1/apoptosis-associated speck-like protein containing a CARD, ASC), as well as inflammatory factors (interleukin, IL-6/IL-1β/tumor necrosis factor, TNF-α/IL-18) were determined with Western blot/enzyme linked immunosorbent assay (ELISA). Cell permeability/reactive oxygen species (ROS) level/superoxide dismutase (SOD) activity/malondialdehyde (MDA) content were assessed by Evans blue staining/2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescent probe/SOD kit/MDA kit.
Results: HRMEC dysfunction was successfully induced by HG, evidenced by decreased viability (P<0.001), increased apoptosis (P<0.001), permeability (P<0.001), and inflammatory factor levels (P<0.001). Feno treatment significantly ameliorated HG-induced HRMEC dysfunction (P<0.01). Meanwhile, HG induction increased ROS production (P<0.001) and MDA content (P<0.001) in HRMECs, while reducing SOD activity (P<0.001), indicative of oxidative stress. This was, however, abolished by Feno (P<0.05). Moreover, Feno eliminated activation of NLRP3 inflammasomes (P<0.05) in HG-induced HRMECs. Strikingly, activation of NLRP3 inflammasomes partially averted the inhibition of Feno on HG-induced HRMEC dysfunction (P<0.05).
期刊介绍:
· International Journal of Ophthalmology-IJO (English edition) is a global ophthalmological scientific publication
and a peer-reviewed open access periodical (ISSN 2222-3959 print, ISSN 2227-4898 online).
This journal is sponsored by Chinese Medical Association Xi’an Branch and obtains guidance and support from
WHO and ICO (International Council of Ophthalmology). It has been indexed in SCIE, PubMed,
PubMed-Central, Chemical Abstracts, Scopus, EMBASE , and DOAJ. IJO JCR IF in 2017 is 1.166.
IJO was established in 2008, with editorial office in Xi’an, China. It is a monthly publication. General Scientific
Advisors include Prof. Hugh Taylor (President of ICO); Prof.Bruce Spivey (Immediate Past President of ICO);
Prof.Mark Tso (Ex-Vice President of ICO) and Prof.Daiming Fan (Academician and Vice President,
Chinese Academy of Engineering.
International Scientific Advisors include Prof. Serge Resnikoff (WHO Senior Speciatist for Prevention of
blindness), Prof. Chi-Chao Chan (National Eye Institute, USA) and Prof. Richard L Abbott (Ex-President of
AAO/PAAO) et al.
Honorary Editors-in-Chief: Prof. Li-Xin Xie(Academician of Chinese Academy of
Engineering/Honorary President of Chinese Ophthalmological Society); Prof. Dennis Lam (President of APAO) and
Prof. Xiao-Xin Li (Ex-President of Chinese Ophthalmological Society).
Chief Editor: Prof. Xiu-Wen Hu (President of IJO Press).
Editors-in-Chief: Prof. Yan-Nian Hui (Ex-Director, Eye Institute of Chinese PLA) and
Prof. George Chiou (Founding chief editor of Journal of Ocular Pharmacology & Therapeutics).
Associate Editors-in-Chief include:
Prof. Ning-Li Wang (President Elect of APAO);
Prof. Ke Yao (President of Chinese Ophthalmological Society) ;
Prof.William Smiddy (Bascom Palmer Eye instituteUSA) ;
Prof.Joel Schuman (President of Association of University Professors of Ophthalmology,USA);
Prof.Yizhi Liu (Vice President of Chinese Ophtlalmology Society);
Prof.Yu-Sheng Wang (Director of Eye Institute of Chinese PLA);
Prof.Ling-Yun Cheng (Director of Ocular Pharmacology, Shiley Eye Center, USA).
IJO accepts contributions in English from all over the world. It includes mainly original articles and review articles,
both basic and clinical papers.
Instruction is Welcome Contribution is Welcome Citation is Welcome
Cooperation organization
International Council of Ophthalmology(ICO), PubMed, PMC, American Academy of Ophthalmology, Asia-Pacific, Thomson Reuters, The Charlesworth Group, Crossref,Scopus,Publons, DOAJ etc.