Han Yu, Lvyin Luo, Rui Zhang, Fabao Xu, Xueying Yang, Yuhan Wu, Dechang Han, Xuanzhe Chu, Jianqiao Li
{"title":"Integrative Analysis and Experimental Validation Reveal FCGR1A and ITGAL as Key Inflammatory Biomarkers in Proliferative Diabetic Retinopathy.","authors":"Han Yu, Lvyin Luo, Rui Zhang, Fabao Xu, Xueying Yang, Yuhan Wu, Dechang Han, Xuanzhe Chu, Jianqiao Li","doi":"10.2147/JIR.S519725","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Diabetic retinopathy (DR), one of the most common severe complications of diabetes, has become a leading cause of blindness among the working population without a fundamental treatment. Proliferative DR (PDR) is the advanced stage of DR. Recent studies have shown that inflammation is closely related to PDR, as it promotes leukocyte adhesion, breakdown of the blood-retinal barrier, and pathological neovascularization, but the key regulatory genes involved remained unclear. We aim to identify inflammation-related biomarkers in PDR.</p><p><strong>Methods: </strong>We downloaded and merged PDR-related datasets GSE102485, GSE94019, and GSE60436, comprising a total of 13 control samples and 37 samples from PDR patients, and conducted a joint analysis of inflammation-related genes (IRGs). Differential analysis, functional enrichment analysis, WGCNA and LASSO were used to identify key genes and their functions in the pathogenesis of PDR. Dataset GSE241239, which contains retinal sequencing data from mice, was used for external validation. Additionally, single-cell RNA analysis using GSE165784, which includes five human-derived PDR samples, was conducted to investigate the cellular expression of Fc Gamma Receptor IA (FCGR1A) and Integrin Subunit Alpha L (ITGAL). Finally, the expression of FCGR1A and ITGAL was validated in DR mouse models and high glucose-induced cell models.</p><p><strong>Results: </strong>Nine key genes associated with the pathogenesis of PDR were identified. Further screening identified FCGR1A and ITGAL as potential therapeutic targets, with single-cell analysis showing their primary distribution in microglia. In vivo and in vitro experiments confirmed localization of FCGR1A and ITGAL in microglia and significant elevation within DR mouse models.</p><p><strong>Conclusion: </strong>Comprehensive analysis indicates, for the first time, that FCGR1A and ITGAL are key inflammation-related genes involved in the pathogenesis of PDR mediated by microglia. FCGR1A and ITGAL are promising therapeutic targets for PDR.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"6229-6243"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S519725","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Diabetic retinopathy (DR), one of the most common severe complications of diabetes, has become a leading cause of blindness among the working population without a fundamental treatment. Proliferative DR (PDR) is the advanced stage of DR. Recent studies have shown that inflammation is closely related to PDR, as it promotes leukocyte adhesion, breakdown of the blood-retinal barrier, and pathological neovascularization, but the key regulatory genes involved remained unclear. We aim to identify inflammation-related biomarkers in PDR.
Methods: We downloaded and merged PDR-related datasets GSE102485, GSE94019, and GSE60436, comprising a total of 13 control samples and 37 samples from PDR patients, and conducted a joint analysis of inflammation-related genes (IRGs). Differential analysis, functional enrichment analysis, WGCNA and LASSO were used to identify key genes and their functions in the pathogenesis of PDR. Dataset GSE241239, which contains retinal sequencing data from mice, was used for external validation. Additionally, single-cell RNA analysis using GSE165784, which includes five human-derived PDR samples, was conducted to investigate the cellular expression of Fc Gamma Receptor IA (FCGR1A) and Integrin Subunit Alpha L (ITGAL). Finally, the expression of FCGR1A and ITGAL was validated in DR mouse models and high glucose-induced cell models.
Results: Nine key genes associated with the pathogenesis of PDR were identified. Further screening identified FCGR1A and ITGAL as potential therapeutic targets, with single-cell analysis showing their primary distribution in microglia. In vivo and in vitro experiments confirmed localization of FCGR1A and ITGAL in microglia and significant elevation within DR mouse models.
Conclusion: Comprehensive analysis indicates, for the first time, that FCGR1A and ITGAL are key inflammation-related genes involved in the pathogenesis of PDR mediated by microglia. FCGR1A and ITGAL are promising therapeutic targets for PDR.
期刊介绍:
An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.