Reduced myogenic differentiation capacity of satellite cell-derived myoblasts in male ICR mice compared with male C57BL/6 and BALB/c mice.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Takahiro Suzuki, Yuriko Nishi, Taku Koyama, Minori Nakada, Rio Arimatsu, Yusuke Komiya, Aoi Ogawa, Rika Osaki, Takahiro Maeno, Ai Saiga Egusa, Mako Nakamura, Ryuichi Tatsumi, Koichi Ojima, Takanori Nishimura
{"title":"Reduced myogenic differentiation capacity of satellite cell-derived myoblasts in male ICR mice compared with male C57BL/6 and BALB/c mice.","authors":"Takahiro Suzuki, Yuriko Nishi, Taku Koyama, Minori Nakada, Rio Arimatsu, Yusuke Komiya, Aoi Ogawa, Rika Osaki, Takahiro Maeno, Ai Saiga Egusa, Mako Nakamura, Ryuichi Tatsumi, Koichi Ojima, Takanori Nishimura","doi":"10.1007/s11626-025-01035-0","DOIUrl":null,"url":null,"abstract":"<p><p>Many strains of wild-type laboratory mice have been developed for studies in the life sciences, including skeletal muscle cell biology. Muscle regeneration capacity differs among wild-type mouse strains. However, few studies have focused on whether myogenic stem cells (satellite cells) are directly related to mouse strain-dependent myoregeneration gaps using in vitro culture models. In this study, we selected three major wild-type mouse strains, CD1 (outbred; Jcl:ICR [ICR]), C57BL/6NJcl (inbred; B6), and BALB/cAJcl (inbred; C), which are widely used in laboratory experiments. Initially, we compared myotube fusion capabilities using satellite cell-derived myoblasts. The results showed that cell cultures isolated from male ICR mice could not efficiently form myotubes owing to low expression levels of myogenic regulatory factors (e.g., MyoD, myogenin, myocyte enhancer factor [MEF] 2A, and MEF2C) compared with B6 and C mouse strains. Next, we compared the myofiber-type compositions of muscle tissues and cultured myotubes among male mice from each of the three strains. Although each muscle tissue used for satellite cell isolation similarly expressed fast-twitch myofiber markers in all mouse strains, male ICR-derived myoblasts formed abundant amounts of slow-type myotubes. By contrast, myotubes from male B6 and C mice expressed substantial levels of fast-twitch myofiber markers. We also performed a comparative experiment in female ICR, B6, and C mouse strains, similar to the male mouse experiments. The myogenic differentiation potencies of myoblasts and myofiber-type compositions of myotubes in female mouse strains were similar. Thus, male ICR-derived satellite cells (myoblasts) had low myogenic differentiation potential, which may be associated with the tendency slow-twitch myotube formation.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01035-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many strains of wild-type laboratory mice have been developed for studies in the life sciences, including skeletal muscle cell biology. Muscle regeneration capacity differs among wild-type mouse strains. However, few studies have focused on whether myogenic stem cells (satellite cells) are directly related to mouse strain-dependent myoregeneration gaps using in vitro culture models. In this study, we selected three major wild-type mouse strains, CD1 (outbred; Jcl:ICR [ICR]), C57BL/6NJcl (inbred; B6), and BALB/cAJcl (inbred; C), which are widely used in laboratory experiments. Initially, we compared myotube fusion capabilities using satellite cell-derived myoblasts. The results showed that cell cultures isolated from male ICR mice could not efficiently form myotubes owing to low expression levels of myogenic regulatory factors (e.g., MyoD, myogenin, myocyte enhancer factor [MEF] 2A, and MEF2C) compared with B6 and C mouse strains. Next, we compared the myofiber-type compositions of muscle tissues and cultured myotubes among male mice from each of the three strains. Although each muscle tissue used for satellite cell isolation similarly expressed fast-twitch myofiber markers in all mouse strains, male ICR-derived myoblasts formed abundant amounts of slow-type myotubes. By contrast, myotubes from male B6 and C mice expressed substantial levels of fast-twitch myofiber markers. We also performed a comparative experiment in female ICR, B6, and C mouse strains, similar to the male mouse experiments. The myogenic differentiation potencies of myoblasts and myofiber-type compositions of myotubes in female mouse strains were similar. Thus, male ICR-derived satellite cells (myoblasts) had low myogenic differentiation potential, which may be associated with the tendency slow-twitch myotube formation.

雄性ICR小鼠与雄性C57BL/6和BALB/c小鼠相比,卫星细胞来源的成肌细胞的成肌分化能力降低。
许多野生型实验室小鼠已被开发用于生命科学研究,包括骨骼肌细胞生物学。肌肉再生能力不同的野生型小鼠品系。然而,很少有研究利用体外培养模型关注肌源性干细胞(卫星细胞)是否与小鼠品系依赖性肌再生间隙直接相关。在这项研究中,我们选择了三种主要的野生型小鼠,CD1(近交);Jcl:ICR [ICR]), C57BL/6NJcl(近交;B6)和BALB/cAJcl(自交系;C),广泛用于实验室实验。最初,我们用卫星细胞衍生的成肌细胞比较了肌管融合能力。结果表明,与B6和C小鼠相比,雄性ICR小鼠分离的细胞培养物由于MyoD、myogenin、myocyte enhancer factor [MEF] 2A和MEF2C等肌生成调节因子的表达水平较低,不能有效形成肌管。接下来,我们比较了三个品系的雄性小鼠肌肉组织和培养的肌管的肌纤维类型组成。尽管用于卫星细胞分离的每种肌肉组织在所有小鼠品系中都相似地表达了快速抽搐肌纤维标记,但雄性icr衍生的成肌细胞形成了大量的慢速型肌管。相比之下,雄性B6和C小鼠的肌管表达了大量的快速收缩肌纤维标记物。我们还在雌性ICR, B6和C小鼠品系中进行了类似于雄性小鼠实验的比较实验。雌性小鼠成肌细胞的成肌分化能力和肌管的肌纤维型成分相似。因此,雄性icr衍生的卫星细胞(成肌细胞)具有较低的成肌分化潜能,这可能与肌管形成缓慢抽搐的倾向有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信