{"title":"Epigenetic modifications in cardiac fibrosis: recent evidence of new pharmacological targets.","authors":"Marian Pérez, Mónica Gómez, Jairo Castellar-López, Patricio Araos, Evelyn Mendoza-Torres, Samir Bolívar","doi":"10.3389/fmolb.2025.1583446","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac fibrosis (CF) is characterized by the excessive deposition of collagen types I (COI I) and III (COI III), primarily mediated by cardiac fibroblasts (CFB). Recent advances in epigenetic research have enhanced our understanding of the molecular mechanisms underlying CF and have facilitated the identification of novel therapeutic strategies targeting key proteins and signaling pathways involved in its progression. Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), are structural and chemical alterations that regulate gene expression and cellular responses without changing the DNA sequence. Investigating the role of epigenetic enzymes in CF may reveal promising pharmacological targets. This review summarizes current evidence on epigenetic modifications implicated in CF and discusses their potential as therapeutic targets for modulating this pathological process.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1583446"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1583446","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiac fibrosis (CF) is characterized by the excessive deposition of collagen types I (COI I) and III (COI III), primarily mediated by cardiac fibroblasts (CFB). Recent advances in epigenetic research have enhanced our understanding of the molecular mechanisms underlying CF and have facilitated the identification of novel therapeutic strategies targeting key proteins and signaling pathways involved in its progression. Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), are structural and chemical alterations that regulate gene expression and cellular responses without changing the DNA sequence. Investigating the role of epigenetic enzymes in CF may reveal promising pharmacological targets. This review summarizes current evidence on epigenetic modifications implicated in CF and discusses their potential as therapeutic targets for modulating this pathological process.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.