Zehra Yavas Abali, Firdevs Bas, Jayne A L Houghton, Saygin Abali, Esin Karakilic Ozturan, Cagrı Gulec, Ayca Dilruba Aslanger, Tugce Kandemir, Durmus Durmaz, Mehmet Akif Yucesoy, Sarah E Flanagan, Sukran Poyrazoglu, Ruveyde Bundak, Feyza Darendeliler
{"title":"Comprehensive clinical and molecular characterization with long-term outcomes in 40 patients with congenital hyperinsulinism.","authors":"Zehra Yavas Abali, Firdevs Bas, Jayne A L Houghton, Saygin Abali, Esin Karakilic Ozturan, Cagrı Gulec, Ayca Dilruba Aslanger, Tugce Kandemir, Durmus Durmaz, Mehmet Akif Yucesoy, Sarah E Flanagan, Sukran Poyrazoglu, Ruveyde Bundak, Feyza Darendeliler","doi":"10.1007/s12020-025-04244-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Congenital hyperinsulinism (CHI) represents the most frequent cause of recurrent hypoglycemia in neonates and infants, stemming from defects in the regulatory pathways of insulin secretion from pancreatic beta cells. This study aims to assess the clinical and genetic characteristics of a CHI cohort and to discuss the complexities involved in managing this heterogeneous disorder.</p><p><strong>Methods: </strong>Forty patients (23 girls) with CHI were included in the study. Data on the diagnosis and treatment of CHI were obtained from the medical records.</p><p><strong>Results: </strong>The median age at diagnosis was 1.4 months (range 0.1-30 months). The mean gestational age was 37.8 ± 2.4 weeks, and the birth weight was 1.1 ± 2.0 SDS. The consanguinity ratio was 35.0%. Median glucose, insulin, and C-peptide concentrations at diagnosis were 34.0 mg/dl (IQR 25.2-41.7), 12.4µU/ml (IQR 4.4-27.1), and 1.5 ng/ml (IQR 0.7-3.8), respectively. Molecular genetic diagnosis could be established in 62.5% (n = 25). Pathogenic variants were predominantly identified in the KATP channel genes (17/25, 68%), with the ABCC8 being the most frequent (n = 15; biallelic: 8, monoallelic: 7). KCNJ11 variants were identified in two (5.0%), GLUD1 variants in three (7.5%), and HADH variants in five patients (12.5%). Pancreatectomy was performed in 10 patients, with a mean age at the time of surgery of 3.9 ± 3.2 months. The genetic etiology was identified in all patients who underwent pancreatectomy, all of whom had defects in the KATP channel. ABCC8 variants were detected in nine (biallelic: 5, monoallelic: 4), while a biallelic variant in the KCNJ11 was identified in one case.</p><p><strong>Conclusion: </strong>A molecular genetic diagnosis was identified in approximately two-thirds of our cohort, underscoring the significance of genetic testing in the management of CHI. Ongoing advances in genetic technologies are anticipated to enhance our understanding of the etiopathogenesis of CHI and support the development of more personalized therapeutic strategies. Although the genotype-phenotype correlation remains only partially elucidated, specific genetic variants may provide predictive insights into treatment resistance, thereby informing more targeted treatment approaches.</p>","PeriodicalId":11572,"journal":{"name":"Endocrine","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12020-025-04244-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Congenital hyperinsulinism (CHI) represents the most frequent cause of recurrent hypoglycemia in neonates and infants, stemming from defects in the regulatory pathways of insulin secretion from pancreatic beta cells. This study aims to assess the clinical and genetic characteristics of a CHI cohort and to discuss the complexities involved in managing this heterogeneous disorder.
Methods: Forty patients (23 girls) with CHI were included in the study. Data on the diagnosis and treatment of CHI were obtained from the medical records.
Results: The median age at diagnosis was 1.4 months (range 0.1-30 months). The mean gestational age was 37.8 ± 2.4 weeks, and the birth weight was 1.1 ± 2.0 SDS. The consanguinity ratio was 35.0%. Median glucose, insulin, and C-peptide concentrations at diagnosis were 34.0 mg/dl (IQR 25.2-41.7), 12.4µU/ml (IQR 4.4-27.1), and 1.5 ng/ml (IQR 0.7-3.8), respectively. Molecular genetic diagnosis could be established in 62.5% (n = 25). Pathogenic variants were predominantly identified in the KATP channel genes (17/25, 68%), with the ABCC8 being the most frequent (n = 15; biallelic: 8, monoallelic: 7). KCNJ11 variants were identified in two (5.0%), GLUD1 variants in three (7.5%), and HADH variants in five patients (12.5%). Pancreatectomy was performed in 10 patients, with a mean age at the time of surgery of 3.9 ± 3.2 months. The genetic etiology was identified in all patients who underwent pancreatectomy, all of whom had defects in the KATP channel. ABCC8 variants were detected in nine (biallelic: 5, monoallelic: 4), while a biallelic variant in the KCNJ11 was identified in one case.
Conclusion: A molecular genetic diagnosis was identified in approximately two-thirds of our cohort, underscoring the significance of genetic testing in the management of CHI. Ongoing advances in genetic technologies are anticipated to enhance our understanding of the etiopathogenesis of CHI and support the development of more personalized therapeutic strategies. Although the genotype-phenotype correlation remains only partially elucidated, specific genetic variants may provide predictive insights into treatment resistance, thereby informing more targeted treatment approaches.
期刊介绍:
Well-established as a major journal in today’s rapidly advancing experimental and clinical research areas, Endocrine publishes original articles devoted to basic (including molecular, cellular and physiological studies), translational and clinical research in all the different fields of endocrinology and metabolism. Articles will be accepted based on peer-reviews, priority, and editorial decision. Invited reviews, mini-reviews and viewpoints on relevant pathophysiological and clinical topics, as well as Editorials on articles appearing in the Journal, are published. Unsolicited Editorials will be evaluated by the editorial team. Outcomes of scientific meetings, as well as guidelines and position statements, may be submitted. The Journal also considers special feature articles in the field of endocrine genetics and epigenetics, as well as articles devoted to novel methods and techniques in endocrinology.
Endocrine covers controversial, clinical endocrine issues. Meta-analyses on endocrine and metabolic topics are also accepted. Descriptions of single clinical cases and/or small patients studies are not published unless of exceptional interest. However, reports of novel imaging studies and endocrine side effects in single patients may be considered. Research letters and letters to the editor related or unrelated to recently published articles can be submitted.
Endocrine covers leading topics in endocrinology such as neuroendocrinology, pituitary and hypothalamic peptides, thyroid physiological and clinical aspects, bone and mineral metabolism and osteoporosis, obesity, lipid and energy metabolism and food intake control, insulin, Type 1 and Type 2 diabetes, hormones of male and female reproduction, adrenal diseases pediatric and geriatric endocrinology, endocrine hypertension and endocrine oncology.