CSF1R ligands promote microglial proliferation but are not the sole regulators of developmental microglial proliferation.

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2025-10-15 Epub Date: 2025-06-03 DOI:10.1242/dev.204610
Brady P Hammond, Sameera Zia, Eugene Hahn, Margarita Kapustina, Tristan Lange, Sarah Friesen, Rupali Manek, Kelly V Lee, Adrian Castellanos-Molina, Floriane Bretheau, Mark S Cembrowski, Bradley J Kerr, Steve Lacroix, Jason R Plemel
{"title":"CSF1R ligands promote microglial proliferation but are not the sole regulators of developmental microglial proliferation.","authors":"Brady P Hammond, Sameera Zia, Eugene Hahn, Margarita Kapustina, Tristan Lange, Sarah Friesen, Rupali Manek, Kelly V Lee, Adrian Castellanos-Molina, Floriane Bretheau, Mark S Cembrowski, Bradley J Kerr, Steve Lacroix, Jason R Plemel","doi":"10.1242/dev.204610","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia - the predominant immune cells of the brain and spinal cord - perform essential functions for the development and maintenance of the central nervous system, contingent upon the regulated developmental proliferation of microglia. However, the factor(s) that regulate microglial proliferation remain unclear. Here, we confirmed the timeline of developmental proliferation and used bioinformatics to identify potential signalling onto microglia in mouse from datasets collected at an age of high developmental microglial proliferation. Of the predicted factors, we found that colony stimulating factor 1 receptor (CSF1R) ligands boosted proliferation in vitro and were increasingly expressed in the brain across development with each displaying a distinct regional and temporal expression pattern. However, we did not observe a coincident alteration to CSF1R ligand levels in a model of abnormal developmental proliferation. Together, although CSF1R ligands can promote microglial proliferation in culture, their developmental expression patterns suggest that they function alongside other unknown factors to regulate developmental microglial proliferation.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204610","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microglia - the predominant immune cells of the brain and spinal cord - perform essential functions for the development and maintenance of the central nervous system, contingent upon the regulated developmental proliferation of microglia. However, the factor(s) that regulate microglial proliferation remain unclear. Here, we confirmed the timeline of developmental proliferation and used bioinformatics to identify potential signalling onto microglia in mouse from datasets collected at an age of high developmental microglial proliferation. Of the predicted factors, we found that colony stimulating factor 1 receptor (CSF1R) ligands boosted proliferation in vitro and were increasingly expressed in the brain across development with each displaying a distinct regional and temporal expression pattern. However, we did not observe a coincident alteration to CSF1R ligand levels in a model of abnormal developmental proliferation. Together, although CSF1R ligands can promote microglial proliferation in culture, their developmental expression patterns suggest that they function alongside other unknown factors to regulate developmental microglial proliferation.

CSF-1R配体促进小胶质细胞增殖,但不是发育性小胶质细胞增殖的唯一调节因子。
小胶质细胞是大脑和脊髓的主要免疫细胞,在中枢神经系统的发育和维持中发挥着重要的功能,这取决于小胶质细胞的调节发育增殖。然而,调节小胶质细胞增殖的因素仍不清楚。在这里,我们确认了发育性增殖的时间表,并利用生物信息学从高发育性小胶质细胞增殖年龄收集的数据集中识别潜在的信号传导到小胶质细胞。在预测因子中,我们发现集落刺激因子-1受体(CSF-1R)配体在体外促进增殖,并且在整个发育过程中在大脑中越来越多地表达,每种配体都显示出不同的区域和时间表达模式。然而,在异常发育性增殖模型中,我们没有观察到CSF-1R配体水平的一致改变。总之,尽管CSF-1R配体可以促进培养中的小胶质细胞增殖,但它们的发育表达模式表明,它们与其他未知因素一起调节发育中的小胶质细胞增殖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信