{"title":"A tracking algorithm for finite-size particles.","authors":"Aryan Mehboudi, Shrawan Singhal, S V Sreenivasan","doi":"10.1063/5.0271539","DOIUrl":null,"url":null,"abstract":"<p><p>Particle-wall interaction is important in various applications such as cell sorting, particle separation, the entire class of hydrodynamic filtration and its derivatives, etc. Yet, accurate implementation of interactions between the wall and finite-size particles is not trivial when working with the currently available particle tracking algorithms/packages as they typically work with point-wise particles. Herein, we report a particle tracking algorithm that takes into account interactions between particles of finite size and nearby solid objects. A particle is modeled as a set of circumferential points. While fluid-particle interactions are captured during the track of particle center, interactions between particles and nearby solid objects are modeled explicitly by examining circumferential points and applying a reflection scheme as needed to ensure impenetrability of solid objects. We also report a modified variant of auxiliary structured grid method to locate hosting cells, which in conjunction with a boundary condition scheme enables the capture of interactions between particles and solid objects. As a proof-of-concept, we numerically and experimentally study the particles' motion within a deterministic lateral displacement microfluidic device. The results successfully demonstrate the zigzag and bump modes observed in our experiments. We also study a microfluidic device with pinched flow numerically and validate our results against experimental data from the literature. By demonstrating an almost 8 <math><mo>×</mo></math> speedup on a system with eight performance threads, our investigations suggest that the algorithm can benefit from parallel processing on multi-thread systems. We believe that the proposed framework can pave the way for designing related microfluidic chips precisely and conveniently.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"19 3","pages":"034103"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081061/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0271539","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Particle-wall interaction is important in various applications such as cell sorting, particle separation, the entire class of hydrodynamic filtration and its derivatives, etc. Yet, accurate implementation of interactions between the wall and finite-size particles is not trivial when working with the currently available particle tracking algorithms/packages as they typically work with point-wise particles. Herein, we report a particle tracking algorithm that takes into account interactions between particles of finite size and nearby solid objects. A particle is modeled as a set of circumferential points. While fluid-particle interactions are captured during the track of particle center, interactions between particles and nearby solid objects are modeled explicitly by examining circumferential points and applying a reflection scheme as needed to ensure impenetrability of solid objects. We also report a modified variant of auxiliary structured grid method to locate hosting cells, which in conjunction with a boundary condition scheme enables the capture of interactions between particles and solid objects. As a proof-of-concept, we numerically and experimentally study the particles' motion within a deterministic lateral displacement microfluidic device. The results successfully demonstrate the zigzag and bump modes observed in our experiments. We also study a microfluidic device with pinched flow numerically and validate our results against experimental data from the literature. By demonstrating an almost 8 speedup on a system with eight performance threads, our investigations suggest that the algorithm can benefit from parallel processing on multi-thread systems. We believe that the proposed framework can pave the way for designing related microfluidic chips precisely and conveniently.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...