Time-Domain Visualization of Electron-Phonon Coupling in Nanographenes.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Rafael Muñoz-Mármol, Saurav Raj, Mattia Russo, Gianluca Serra, Hao Zhao, Giacomo Bassi, Andrea Lucotti, Francesco Scotognella, Giulio Cerullo, Guglielmo Lanzani, Matteo Tommasini, Margherita Maiuri, Akimitsu Narita, Giuseppe Maria Paternò
{"title":"Time-Domain Visualization of Electron-Phonon Coupling in Nanographenes.","authors":"Rafael Muñoz-Mármol, Saurav Raj, Mattia Russo, Gianluca Serra, Hao Zhao, Giacomo Bassi, Andrea Lucotti, Francesco Scotognella, Giulio Cerullo, Guglielmo Lanzani, Matteo Tommasini, Margherita Maiuri, Akimitsu Narita, Giuseppe Maria Paternò","doi":"10.1002/smtd.202500419","DOIUrl":null,"url":null,"abstract":"<p><p>Coherent molecular vibrations determine many molecular properties like intersystem crossing or intramolecular charge transfer, holding potential for developing systems with vibrationally controlled electronic dynamics and reactivity. Research efforts have been focused mainly on localized vibrational modes, leaving collective vibrational modes widely unexplored despite their prominent role in driving molecular dynamics. Besides, the lower intensity associated to collective vibrational modes and their low frequency makes their study a demanding task. In this sense, nanographenes are promising materials that can be synthesized with tailored shapes and sizes-including edge substituents-, offering a great platform for studying collective vibrational modes. Here, femtosecond impulsive vibrational spectroscopy, Raman spectroscopy, and density functional theory calculations are combined to investigate for the first time low-frequency vibrational motions in two dibenzo[hi,st]ovalene (DBOV) nanographenes. The systematic study of mesityl-substituted DBOV (DBOV-Mes) and its chloro-functionalized derivative (Cl-DBOV-Mes) demonstrates that collective vibrational modes supported by DBOV derivatives can be altered with edge substitution, while optoelectronic properties are preserved. The multidisciplinary approach followed in this work sets the stage for studies on collective vibrational modes in nanographenes and other π-conjugated systems.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500419"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500419","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coherent molecular vibrations determine many molecular properties like intersystem crossing or intramolecular charge transfer, holding potential for developing systems with vibrationally controlled electronic dynamics and reactivity. Research efforts have been focused mainly on localized vibrational modes, leaving collective vibrational modes widely unexplored despite their prominent role in driving molecular dynamics. Besides, the lower intensity associated to collective vibrational modes and their low frequency makes their study a demanding task. In this sense, nanographenes are promising materials that can be synthesized with tailored shapes and sizes-including edge substituents-, offering a great platform for studying collective vibrational modes. Here, femtosecond impulsive vibrational spectroscopy, Raman spectroscopy, and density functional theory calculations are combined to investigate for the first time low-frequency vibrational motions in two dibenzo[hi,st]ovalene (DBOV) nanographenes. The systematic study of mesityl-substituted DBOV (DBOV-Mes) and its chloro-functionalized derivative (Cl-DBOV-Mes) demonstrates that collective vibrational modes supported by DBOV derivatives can be altered with edge substitution, while optoelectronic properties are preserved. The multidisciplinary approach followed in this work sets the stage for studies on collective vibrational modes in nanographenes and other π-conjugated systems.

纳米石墨烯中电子-声子耦合的时域可视化。
相干分子振动决定了许多分子性质,如系统间交叉或分子内电荷转移,为开发具有振动控制的电子动力学和反应性的系统提供了潜力。研究工作主要集中在局部振动模式,而集体振动模式在驱动分子动力学方面发挥着重要作用,但尚未得到广泛的探索。此外,集体振动模态的强度较低且频率较低,这使得对它们的研究成为一项艰巨的任务。从这个意义上说,纳米石墨烯是一种很有前途的材料,可以合成具有定制形状和尺寸的材料,包括边缘取代基,为研究集体振动模式提供了一个很好的平台。本文将飞秒脉冲振动光谱、拉曼光谱和密度泛函理论计算相结合,首次研究了两个二苯并[hi,st]烯(DBOV)纳米石墨烯中的低频振动运动。系统研究了甲基取代DBOV (DBOV- mes)及其氯功能化衍生物(Cl-DBOV-Mes),结果表明,DBOV衍生物支持的集体振动模式可以通过边缘取代而改变,同时保持光电特性。本研究采用的多学科方法为纳米石墨烯和其他π共轭体系的集体振动模式的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信