Tailoring CuFeOx-Based Catalytic Oxygen Carrier for Lattice Oxygen-Induced Oxidative Steam Reforming of Methanol.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-19 DOI:10.1002/cssc.202500599
Feng Tan, Zhiqiang Sun
{"title":"Tailoring CuFeO<sub>x</sub>-Based Catalytic Oxygen Carrier for Lattice Oxygen-Induced Oxidative Steam Reforming of Methanol.","authors":"Feng Tan, Zhiqiang Sun","doi":"10.1002/cssc.202500599","DOIUrl":null,"url":null,"abstract":"<p><p>Methanol reforming demonstrates the possibility of realizing hydrogen storage, transport, and on-site supply. Nevertheless, this approach faces limitations due to outlet CO generation and catalyst degradation. This work fabricates a series of CuFeO<sub>x</sub>-based catalytic oxygen carriers (COC) with various Cu-to-Fe ratios for lattice oxygen-induced methanol reforming, which goes through lattice oxygen-induced methanol reforming  →  catalytic steam methanol reforming → oxidative steam methanol reforming. It is revealed that the lattice oxygen mobility can be tuned by modulating the Cu-to-Fe mole ratios. Of the synthesized COCs, Cu<sub>2</sub>Fe<sub>3</sub> shows the highest catalytic activity. It is supposed that CuO in COC provides lattice oxygen with catalytically site of Cu<sup>0</sup>, while CuFe<sub>5</sub>O<sub>8</sub> contributes relatively stable Cu<sup>+</sup>, synergistically inducing highly efficient oxidative steam reforming of methanol. Specifically, a H<sub>2</sub> production rate of 93.9 mmol·H<sub>2</sub>·h<sup>-1</sup> g<sup>-1</sup>·COC·at 220 °C is achieved with relatively stable redox looping within 20 cycles. The in situ diffuse reflectance infrared Fourier transform spectroscopy results indicate that the bridged formate species is identified as the primary intermediate under lattice oxygen-induced conditions, and the reaction pathway is anticipated to be CH<sub>3</sub>OH* → CH<sub>3</sub>O* → CH<sub>2</sub>O* → HCOO* → H<sub>2</sub> + CO<sub>2</sub>.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500599"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500599","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Methanol reforming demonstrates the possibility of realizing hydrogen storage, transport, and on-site supply. Nevertheless, this approach faces limitations due to outlet CO generation and catalyst degradation. This work fabricates a series of CuFeOx-based catalytic oxygen carriers (COC) with various Cu-to-Fe ratios for lattice oxygen-induced methanol reforming, which goes through lattice oxygen-induced methanol reforming  →  catalytic steam methanol reforming → oxidative steam methanol reforming. It is revealed that the lattice oxygen mobility can be tuned by modulating the Cu-to-Fe mole ratios. Of the synthesized COCs, Cu2Fe3 shows the highest catalytic activity. It is supposed that CuO in COC provides lattice oxygen with catalytically site of Cu0, while CuFe5O8 contributes relatively stable Cu+, synergistically inducing highly efficient oxidative steam reforming of methanol. Specifically, a H2 production rate of 93.9 mmol·H2·h-1 g-1·COC·at 220 °C is achieved with relatively stable redox looping within 20 cycles. The in situ diffuse reflectance infrared Fourier transform spectroscopy results indicate that the bridged formate species is identified as the primary intermediate under lattice oxygen-induced conditions, and the reaction pathway is anticipated to be CH3OH* → CH3O* → CH2O* → HCOO* → H2 + CO2.

基于CuFeOx的点阵氧诱导甲醇氧化蒸汽重整催化氧载体的研制。
甲醇重整展示了实现氢气储存、运输和现场供应的可能性。然而,由于出口CO生成和催化剂降解,这种方法面临局限性。本文制备了一系列不同cu - fe比的cufeox基催化氧载体(COC),用于晶格氧诱导甲醇重整→催化蒸汽甲醇重整→氧化蒸汽甲醇重整。结果表明,可以通过调节cu - fe摩尔比来调节晶格氧迁移率。在所合成的COCs中,Cu2Fe3表现出最高的催化活性。假设COC中的CuO提供了具有Cu0催化位点的晶格氧,而CuFe5O8提供了相对稳定的Cu+,协同诱导了高效的OSRM。在220°C条件下,H2产率为93.9 mmol·H2∙h-1∙g-1·COC·,并在20个循环内实现相对稳定的氧化还原循环。原位漂移结果表明,在晶格氧诱导条件下,桥接甲酸酯是主要中间体,反应路径为CH3OH*→ch30 *→CH2O*→HCOO*→H2 + CO2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信