Effect of Fluorine Doping on the Electrochemistry and Structural Stability of Single-Particle LiNiO2.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-19 DOI:10.1002/cssc.202500300
Elhoucine ELmaataouy, Majid El Kassaoui, Mohamed ELmouhinni, Kei Kubota, Abdlewahed Chari, Mohamed Aqil, Adil Sghiouri, Jones Alami, Omar Mounkachi, Mouad Dahbi
{"title":"Effect of Fluorine Doping on the Electrochemistry and Structural Stability of Single-Particle LiNiO<sub>2</sub>.","authors":"Elhoucine ELmaataouy, Majid El Kassaoui, Mohamed ELmouhinni, Kei Kubota, Abdlewahed Chari, Mohamed Aqil, Adil Sghiouri, Jones Alami, Omar Mounkachi, Mouad Dahbi","doi":"10.1002/cssc.202500300","DOIUrl":null,"url":null,"abstract":"<p><p>It is widely acknowledged that single-particle LiNiO<sub>2</sub> represents an attractive option as a cobalt-free cathode material, given its high capacity and average working voltage. However, prolonged cell cycling has been observed to result in a decline in performance and structural deterioration in LiNiO<sub>2</sub> cathodes. Anion doping has recently been the subject of considerable interest due to the numerous benefits it offers, including the elimination of the need for active element replacement and increased structural stability. In this study, a fluorine-doped single-particle LiNiO<sub>2</sub> is prepared via a hydrothermal synthesis assisted by ball milling, resulting in a stable charge/discharge process at a current density of 0.2C, with a capacity retention of 90% after 60 cycles and first discharge capacity of 220 mAh g<sup>-1</sup>. The incorporation of fluorine is confirmed through cross-sectional scanning electron microscopy and X-ray photoelectron spectroscopy, which reveal a correlation between fluorine doping and the partial reduction of Ni<sup>3+</sup> to Ni<sup>2+</sup>. The impact of fluorine doping on the structural stability of LiNiO<sub>2</sub> is investigated using in-situ X-ray diffraction XRD and density functional theory calculations. Consequently, the F doping strategy demonstrates the dual benefit of high capacity and cycle retention in single-particle LiNiO<sub>2</sub> cathodes.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500300"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500300","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is widely acknowledged that single-particle LiNiO2 represents an attractive option as a cobalt-free cathode material, given its high capacity and average working voltage. However, prolonged cell cycling has been observed to result in a decline in performance and structural deterioration in LiNiO2 cathodes. Anion doping has recently been the subject of considerable interest due to the numerous benefits it offers, including the elimination of the need for active element replacement and increased structural stability. In this study, a fluorine-doped single-particle LiNiO2 is prepared via a hydrothermal synthesis assisted by ball milling, resulting in a stable charge/discharge process at a current density of 0.2C, with a capacity retention of 90% after 60 cycles and first discharge capacity of 220 mAh g-1. The incorporation of fluorine is confirmed through cross-sectional scanning electron microscopy and X-ray photoelectron spectroscopy, which reveal a correlation between fluorine doping and the partial reduction of Ni3+ to Ni2+. The impact of fluorine doping on the structural stability of LiNiO2 is investigated using in-situ X-ray diffraction XRD and density functional theory calculations. Consequently, the F doping strategy demonstrates the dual benefit of high capacity and cycle retention in single-particle LiNiO2 cathodes.

氟掺杂对单粒子LiNiO2电化学及结构稳定性的影响。
鉴于其高容量和平均工作电压,人们普遍认为单颗粒LiNiO2作为无钴阴极材料是一种有吸引力的选择。然而,长时间的电池循环已被观察到导致性能下降和结构恶化的LiNiO2阴极。阴离子掺杂最近引起了人们极大的兴趣,因为它提供了许多好处,包括消除了对活性元素替换的需要和增加的结构稳定性。本研究采用球磨辅助水热合成法制备了含氟掺杂的单颗粒LiNiO2,在0.2C电流密度下实现了稳定的充放电过程,60次循环后容量保持率为90%,首次放电容量为220 mAh.g-1。通过横断面扫描电镜(SEM)和x射线光电子能谱(XPS)证实了氟的掺入,揭示了氟掺杂与Ni3+部分还原为Ni2+之间的相关性。采用原位x射线衍射(XRD)和密度泛函理论(DFT)计算研究了氟掺杂对LiNiO2结构稳定性的影响。因此,F掺杂策略在单颗粒LiNiO2阴极中显示出高容量和循环保留的双重好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信